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Ehime University, Matsuyama
(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1960)

The purpose of the present note is to give a sufficient condition
under which the inequality Ind R X S<Ind R+Ind S holds good, where
Ind denotes the large inductive dimension. We define inductively
Ind R. Let Ind ¢=—1, where ¢ is the empty set. Ind R<n (=0,1,
2,--+) if and only if for any pair FFCG of a closed set F' and an
open set G there exists an open set H with FCHCG such that
Ind (H—H)<n—1. When Ind R<n—1 is false and Ind R<= is true,
we call Ind R=n. When Ind R<n is false for any 7, we call Ind R= .

Let U be a collection of subsets of a topological space R. Then
we call U is discrete or locally finite if every point of R has a
neighborhood which meets at most respectively one element or finite
elements of U. We call Il is o-discrete or g-locally finite if U is a
sum of a countable number of discrete or locally finite subcollections
respectively. A binary covering is a covering which consists of two
elements.

Lemma 1. Let R be a hereditarily paracompact Hausdorff space.
Then the following statements are valid.

1) (Subset theorem). For any subset T of R Ind T <Ind R.

2) (Sum theorem). If F, ¢=1,2,---, are closed, Ind :lFt:sup
Ind F,

3) (Local dimension theorem). For any collection I of open sets
Ind—{U; Uel}=sup{Ind U; Uecll}.

This is proved by C. H. Dowker [1]. The main part of the

following lemma is essentially proved in Morita [4], but we give
here full proof for the sake of completeness.

Lemma 2. In a hereditarily paracompact Hausdorff space R the
Sollowing conditions are equivalent.

1) Ind R<n.

2) Ewvery open covering con be refined by a locally finite and
o-discrete open covering P such that for any Ve Ind(V-V)<n—1.

3) Ewvery binary open covering canm be refined by a o-locally
finite open covering B such that for any VeB Ind (V—V)<n—1.

Proof. First we prove the implication 1)—2). Let U be an
arbitrary open covering of R; then by A. H. Stone’s theorem [5] U
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can be refined by an open covering I, where each U,={U(t, a);
i=1

acA;} is a discrete collection of open sets. Let U,=-A{U(i, a); ac A},
9=1,2,---; then {U; i=1,2,--:} can be refined by a locally finite
open covering {W, 1=1,2,-..} such that W,C U, for every 4. Since
a paracompact Hausdorff space is normal and locally finite open cover-
ing of a normal space is shrinkable,” {W, 4=1,2,---} can be refined
by a closed covering {F; 1=1,2,-.-} such that F,CW, for every 1.
Let V, be an open set with F,CV,C W, such that Ind (V,—V,)<n—1.
Let B,={V(4,a)=V,~U®, a); acA,}; then 28.—.;/ B, satisfies all the
requirements in 2). -

The implication 2)—38) is evident.

Let us prove 3) implies 1). Let FFCG be an arbitrary pair of
a closed set F' and an open set G. Let L and M be open sets with
FCLCLCMCMCG. The binary open covering {M, R—L} is re-
fined by an open covering %zgl&, where B,={V (i, a);ac4}, i=1,

2,-+-, are locally finite, such that for any Ve® Ind(V—-V)<n—1.
Let

(1) Ci=—AV—-V;VeB}, C={V-V;, Ve
then we have C=i\_z1 C,. By Lemma 1 we have
(2) Ind C<n—1.

Here we notice that by Lemma 1 Ind D<n—1 for any subset D of C.
Let

(8) H=<{V(a); V(@G a)~L¥Ep acAd), K=-AV( a) V(i a)

/'\Z=¢, acA}.

Put

(4) P,=H,, Q1=K1'—ﬁ1; PizHi—vI_{j’ Qi=Ki_vﬁj’ 1=2, 38, -,
- J<i - J<i

( 5) P=i=\/1Pi, in:/l Q,;.

Then we have

(6) R=VP_¢V(V6£)’
i=1 =1

(7) P’\stb’ FlCM (i=172"")r QAZ:¢-

Finally we put
(8) W=R—Q.

Since Q~L=¢ by (7) and L is open, we have @ ~L=¢ and hence

FCLCYV. Since V=R—§CR—;/ Qc; P, MCG by (6) and (7),
=1 =1
we have

1) A covering {U,; a€ A} is called shrinkable if there exists a closed covering
{F,; < A} such that F,cU, for every ac A,
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(9) FCwca.
Since P,=P,~(P,—P,) and Q,=Q,~(Q,—Q,), we have from (6)
(10) R=PVQ‘-’(:1(13¢-P1))V(;1 @ —Q).

From (7) and the openness of P it follows that P~Q=¢. Hence
P~(@—Q)=¢. Therefore we have

(1) Q-QC S (P—P)~ (= @—Q)).

Since P,—P,CH,—H, by (4) and H,—H,CC,CC, we have

(12) P,—P,CC.

Similarly we have

(13) Q,—Q.CC.

Combining (12) and (18) with (11), we have @—QCC and hence
(14) Ind @—Q)<n—1.

Thus we have

(15) Ind (W—W)<n—1,

and the lemma is completely proved.

Lemma 3. In a topological space R the following conditions are
equivalent with each other.

1) R is a metrizable space with Ind R<n.

2) There exists a o-discrete open basis B of R such that for every
Vel Ind(V—-V)<n—1.

3) There exists a o-locally finite open basis B of R such that
for every Ve®B Ind (V—-V)<n—1.

Proof. The implication 2)—3) is evident.

Let B be a o-locally finite open basis of R such that for every
VeS8 Ind(V—V)<n—1. Then R is metrizable by a well-known
meterization theorem of J. Nagata and Yu. M. Smirnov. Moreover we
get Ind R<n by a theorem of Katétov [2] and Morita [4]. Hence
3) implies 1).

The implication 1) —2) is verified as follows. Let R be a metric
space with Ind R<n. Then by Lemma 2 there exists for every
positive integer ¢ a o-discrete open covering B, the diameter of each

element of which is less than 1/i such that for every Ve®B, Ind (V—V)

<n—1. Then B=C_219, is a o-discrete open basis of R such that
2=1

for every Ve® Ind(V—V)<n—1, and the proof of the lemma is
finished.

Lemma 4. Let R be a perfectly mormal,? paracompact space

2) A space R is called perfectly normal if R is normal and every open subset
of R is an F,.
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and S a metric space. Then RXS is a hereditarily paracompact
Hausdorff space.

This is proved by Michael [3].

Theorem. Let R be a perfectly normal, paracompact space and
S a metric space. If either R=¢ or S=¢ holds good, we have
Ind RXS<Ind R+1Ind S.

Proof. RXS is hereditarily paracompact by Lemma 4. When
Ind R or Ind S is infinite, the theorem trivially holds good. Hence
we prove the theorem for the case Ind R=m< o, Ind S=n<~. We
shall carry out the proof by the induction on k=m-+n. When m-+n
=—1, either R or S is empty. Hence the theorem is evidently true.
Now we assume that the theorem holds for the case when Ind R
+Ind S is smaller than k. Let m+n=k.

Let & be an arbitrary binary open covering of RXS. Let us
construct a refinement of & satisfying the condition 3) of Lemma 2.

Let B={V ,BeB:CiBi} be an open basis of S such that for every
i=1

Vie®B Ind (V;—Vy)<n—1 and B,={V,; BeB,} is discrete for every 4.
Let U={U,; ac A} be an open basis of R and

(16) C={(a, B); (@, B)c AX B, U, XV, refines G}.

Then evidently {U,X V; (@, B)€C} is an open covering of RXS which

refines . Let

eV)) Ay={a; (a, p)eC},
and
(18) Uy=A{U, acA,}.

Since R is perfectly normal, there exists a sequence of open sets Gy,
1=1,2,.-., such that

(19) @,91 (- Gpg C apg - Gﬂg c.-- and 3 G‘giz Up.
Consider an open covering =
(20) upz{Ua/'\Gﬂi; aeA‘g, ?:=-1, 2,‘ . '}

of U;. Then by Lemmas 1 and 2 1, can be refined by an open covering
%ﬁzxi’ﬁﬂi of U, where each W, is discrete in U, such that for

every We®, Ind (W— W)<n—1. Here we notice that the closure of
Wel,; in U, is the same as that in the whole space R by (19). Let

(21) Wy, ={W; WeB,,, W Gyl
Then B,,; is discrete in R by (19). Let
(22) gijk={W>< Vﬂ; Wewﬂ”, ‘BGBk}.

Then 8, is discrete in RxS. Since WX V,— WX V,=(W—W)x V,)
“(Wx(V,—V,), we have
(23) Ind(WXV,—WXVgy)<m-+n—1,

for any WX V,e8,, by the induction assumption and Lemma 1.
Evidently
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(24) R = 5 Sijk

6,4, k=1
is an open covering of RXS and refines . Thus we conclude that
Ind RXS<m+mn by Lemma 2 and the theorem is proved.
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