No. 9]

134. Some Topological Properties on Royden's Compactification of a Riemann Surface

By Mitsuru NAKAI

Mathematical Institute, Nagoya University (Comm. by K. Kunugi, M.J.A., Nov. 12, 1960)

1. Let R be an open Riemann surface and M(R) be the totality of bounded a.c.T. functions on R with finite Dirichlet integrals and $M_0(R)$ be the totality of functions in M(R) with compact supports. We denote by $M_{\mathcal{A}}(R)$ the closure of $M_0(R)$ in BD-convergence topology, where a sequence $\{\varphi_{\nu}\}$ converges to φ in BD-convergence topology if the sequence $\{\varphi_{\nu}\}$ is bounded and converges to φ uniformly on each compact subset of R and the sequence $\{\int_{R} d(\varphi_{\nu} - \varphi) \wedge \overline{*d(\varphi_{\nu} - \varphi)} \}$ converges to zero.

Royden's compactification R^* of R is the unique compact Hausdorff space containing R as its open and dense topological subspace such that any function in M(R) can be uniquely extended to R^* so as to be continuous on R^* . The (Royden's) ideal boundary of R is defined by R^*-R and denoted by ∂R . The compact set $\Delta=\{p\in R^*; f(p)=0 \text{ for all } f \text{ in } M_{\Delta}(R)\}$ is a part of ∂R and called the harmonic boundary of R. We also say that $\partial R-\Delta$ is the non-harmonic boundary of R. These notions are introduced by Royden [3]. Our formulation above mentioned is different from that in [3] but equivalent to that of Royden. Details are in [1].

In this note we state some topological properties of R^* and solve a question raised in [3].

2. Consider a normal exhaustion $\{R_n\}_1^{\infty}$ of R in the sense of Pfluger [2]. The open set $R-\overline{R}_n$ is decomposed into a finite number of non-compact connected components $K_1^{(n)}, K_2^{(n)}, \dots, K_{N(n)}^{(n)}$. A determining sequence is a sequence $\{K_{i_n}^{(n)}\}_1^{\infty}$ such that

$$K_{i_1}^{(1)} \supset K_{i_2}^{(2)} \supset \cdots \supset K_{i_n}^{(n)} \supset K_{i_{n+1}}^{(n+1)} \supset \cdots \qquad (1)$$

If we fix an exhaustion $\{R_n\}_1^{\infty}$, then the totality of determining sequences corresponds in a one-to-one and onto manner to the totality of *ends* of R in the sense of Kerékjártó-Stoïlow [2]. Let $\{E_k\}$ be the decomposition of ∂R into connected components. First we show

Theorem 1. The decomposition $\{E_k\}$ can be regarded as the totality of ends of R in the sense of Kerékjártó-Stoïlow.

Proof. An end is determined by a sequence (1). Then the intersection $\alpha = \bigcap_{i=1}^{\infty} \overline{K}_{i_n}^{(n)}$ is a continuum in ∂R , since each $\overline{K}_{i_n}^{(n)}$ is a con-

nected compact set in R^* . There exists a component E_k in $\{E_k\}$ such that $E_k \cap \alpha$ is not empty. By the definition of E_k , α is contained in E_k . Now we show that $\alpha = E_k$. Contrary to the assertion, assume the existence of a point p_0 in $E_k - \alpha$. Then we can find a positive integer n such that p_0 lies outside $\overline{K}_{i_n}^{(n)}$. Take a closed Jordan curve C in $K_{i_n}^{(n)}$ which is homologous to $\Gamma = R \cap (\overline{K}_{i_n}^{(n)} - K_{i_n}^{(n)})$ in R. We denote by D the compact domain in R which is surrounded by Γ and C. Let w(p) be the harmonic function defined in D with boundary value 1 on Γ and 0 on C. We put

$$f(p) = \begin{cases} 1 & \text{on } R - K_{i_n}^{(n)}; \\ w(p) & \text{on } D; \\ 0 & \text{on } K_{i_n}^{(n)} - D. \end{cases}$$

Clearly f(p) is contained in M(R) and hence continuous on R^* . Thus f(p)=0 on $\partial R \cap \overline{K}_{i_n}^{(n)}$. In particular, f is continuous on E_k and takes only two values 0 and 1. Obviously f=0 on $\alpha \subset E_k$ and 1 at $p_0 \in E_k$. This is absurd, since E_k is connected. Hence we have proved that for any end whose determining sequence is $\{K_{i_n}^{(n)}\}$, we can find an E_k in $\{E_k\}$ such that

$$E_{\iota} = \bigcap_{i=1}^{\infty} \overline{K}_{i}^{(n)}. \tag{2}$$

Conversely we assert that for any E_k in $\{E_k\}$, there exists an end whose determining sequence is $\{K_{i_n}^{(n)}\}$ satisfying (2). For the aim, take an E_k in $\{E_k\}$ and a point p_0 in E_k . Using the function f(p) above defined, we conclude that the sets $\overline{K}_1^{(n)}, \overline{K}_2^{(n)}, \cdots, \overline{K}_{N(n)}^{(n)}$ are mutually disjoint. Hence the set $K_{i_n}^{(n)}$ containing p_0 in its closure is uniquely determined for each n. Therefore, the sequence $\{K_{i_n}^{(n)}\}$ such that $p_0 \in \overline{K}_{i_n}^{(n)}$ is uniquely determined and is a determining sequence. By a similar argument as above, we see that $E_k = \bigcap_{i=1}^{\infty} \overline{K}_{i_n}^{(n)}$. Hence we have proved that for any E_k in $\{E_k\}$ there exists an end whose determining sequence is (1) and satisfies (2).

Thus $\{E_k\}$ corresponds to the totality of ends of R in a one-to-one and onto manner. Q.E.D.

From this theorem, we may call E_k an end of R. Incidently we have also seen in the above proof that any dividing cycle of R divides ∂R

3. Let $\mathfrak{U}^{K_i^{(n)}}$ be the totality of non-negative superharmonic functions u on $K_{i_n}^{(n)}$ such that at any point p_0 in $(\overline{K}_{i_n}^{(n)} - K_{i_n}^{(n)}) \cap R$

$$\lim_{\frac{p\to p_0}{p\to p_0}} u(p) \ge 1.$$

We set

$$w(p; K_{i_n}^{(n)}) = \inf (u(p); u \in U^{K_{i_n}^{(n)}})$$

on $K_{i_n}^{(n)}$. By Perrons' theorem, we see that $w(p; K_{i_n}^{(n)})$ is a harmonic function on $K_{i_n}^{(n)}$ with boundary value 1 on $(\overline{K}_{i_n}^{(n)} - K_{i_n}^{(n)}) \cap R$. If none of

No. 9]

 $w(p;K_{i_n}^{(n)})$ is constant for a sequence (1), then we say that the end determined by (1), i.e. $E_k = \bigcap_{i=1}^{\infty} \overline{K}_{i_n}^{(n)}$ is hyperbolic. If this is not the case, we say that it is parabolic. Here we remark that the Green's function $g(p, p_0)$ of R is continuous on R^* except a point p_0 in R and vanishes on Δ . Now we prove

Theorem 2. The following three conditions are mutually equivalent:

- (a) E_k is a hyperbolic end;
- (b) $E_k \triangle I$ is non-empty;
- (c) $\inf (g(p, p_0); p \in E_k) = 0.$

Proof. (a) implies (b). Contrary to the assertion, assume that $E_k \cap \mathcal{I}$ is empty. Then $\overline{K}_{i_n}^{(n)} \cap \mathcal{I}$ is empty for all sufficiently large n. For each point p in $\overline{K}_{i_n}^{(n)}$, there exists a function f_p in $M_{\mathcal{I}}(R)$ such that $f_p(p) \neq 0$. Considering f_p^2 instead of f_p , we may assume $f_p \geq 0$ on R^* . Since $\overline{K}_{i_n}^{(n)}$ is compact, we can find a finite number of points p_p in $\overline{K}_{i_n}^{(n)}$ and a positive number p_p such that

$$g = \sum_{\nu} f_{p_{\nu}} \geq c > 0$$

on $K_{i_n}^{(n)}$ and clearly g is in $M_{\mathcal{A}}(R)$. Let $\widehat{K}_{i_n}^{(n)}$ be Schottky's double of $K_{i_n}^{(n)}$ along $(\overline{K}_{i_n}^{(n)} - K_{i_n}^{(n)}) \cap R$. Restrict g on $K_{i_n}^{(n)}$ and next extend it to $\widehat{K}_{i_n}^{(n)}$ in the symmetric manner. We denote by \widehat{g} the above function thus obtained from g. It is clear that \widehat{g} belongs to $M_{\mathcal{A}}(\widehat{K}_{i_n}^{(n)})$ and $\widehat{g} \geq c > 0$ on $\widehat{K}_{i_n}^{(n)}$. Since $M_{\mathcal{A}}(\widehat{K}_{i_n}^{(n)})$ is an ideal of $M(\widehat{K}_{i_n}^{(n)})$ and g is inversible in $M(\widehat{K}_{i_n}^{(n)})$, $1=\widehat{g}/\widehat{g}$ belongs to $M_{\mathcal{A}}(\widehat{K}_{i_n}^{(n)})$. This shows that $\widehat{K}_{i_n}^{(n)}$ is a parabolic Riemann surface (cf. [3] and [1]). On the other hand, (a) implies that $\widehat{K}_{i_n}^{(n)}$ is a hyperbolic Riemann surface. This is absurd. Thus (a) implies (b).

- (b) implies (c). In fact, $\widetilde{g}(p, p_0) = \min(g(p, p_0), 1)$ belongs to $M_{\mathcal{A}}(R)$ and so $\widetilde{g}(p, p_0)$ vanishes on \mathcal{A} . Hence the same is true for $g(p, p_0)$. Since $E_k \subset \mathcal{A}$ is not empty, we get (c).
- (c) implies (a). To show this we may clearly assume that p_0 is in R_1 . We put $m=\inf(g(p,\,p_0);\,p\in(\overline{K}_{i_n}^{(n)}-K_{i_n}^{(n)})-R)>0$ and $u_0(p)=m^{-1}g(p,\,p_0)$. Then u_0 belongs to $\mathfrak{U}^{K_{i_n}^{(n)}}$ and so

$$w(p; K_{i_n}^{(n)}) \leq u_0(p)$$
.

- As (c) holds, so inf $(w(p; K_{i_n}^{(n)}); p \in K_{i_n}^{(n)}) = 0$. Thus $w(p; K_{i_n}^{(n)})$ is not constant for all n. Hence we get the validity of (a). Q.E.D.
- 4. Next we consider the distribution of non-harmonic boundary points in ∂R . The following shows that the situation is very complicated and somewhat pathological in the viewpoint of our intuition.

Theorem 3. Let F be a compact set in ∂R such that there exists a sequence $\{D_n\}_1^{\infty}$ of open sets in R satisfying $D_n \supset \overline{D}_{n+1} \subset R$, n=1, 2,

 \cdots , and $F = \bigcap_{1}^{\infty} \overline{D}_{n}$. Then $F \subset (\partial R - \Delta)$ is non-empty.

Proof. Let $U_n = D_n - \overline{D}_{n+1} \subset R$, $n = 1, 2, \cdots$. In U_n we take two simply connected Jordan domains $V_{n,0}$ and $V_{n,1}$ and a point p_n such that $p_n \in V_{n,1} \subset \overline{V}_{n,0} \subset \overline{V}_{n,0} \subset U_n$ and the annulus $A_n = V_{n,0} - \overline{V}_{n,1}$ is conformally equivalent to the annulus $(1 < |z| < \exp{(2^n \pi)})$. Let $w_n(p)$ be a continuous function defined on R as follows:

$$w_{\scriptscriptstyle n}(p) \! = \! \begin{cases} 0 & \text{on } R \! - \! V_{\scriptscriptstyle n,0}; \\ \text{harmonic} & \text{on } A_{\scriptscriptstyle n}; \\ 1 & \text{on } \overline{V}_{\scriptscriptstyle n,1}. \end{cases}$$

Then from $\iint_R dw_n \wedge *dw_n = 2\pi/\mathrm{mod}\ A_n$ and $\mathrm{mod}\ A_n = \mathrm{mod}\ (1<|z|$ $<\exp{(2^n\pi)})=2^n\pi$, we get

$$\int\!\!\int_{\mathbb{R}}\!dw_n\wedge^*dw_n=2^{-(n-1)}.$$

Now we put

$$\varphi_n(p) = \sum_{i=1}^n w_i(p)$$

and

$$\varphi(p) = \sum_{i=1}^{\infty} w_i(p)$$

respectively. Clearly $\varphi_n \in M_0(R)$ and $\{\varphi_n\}_1^{\infty}$ is bounded and converges to φ uniformly on each compact subset of R and

$$\iint_{R} d(\varphi - \varphi_{n}) \wedge *d(\varphi - \varphi_{n}) = \sum_{i=n+1}^{\infty} \iint_{R} dw_{i} \wedge *dw_{i} = 2^{-n}.$$

Hence $\{\varphi_n\}$ converges to φ in BD-convergence topology and so $\varphi \in M_{\mathcal{A}}(R)$. Let p_0 be an accumulation point of $\{p_n\}_1^{\infty}$. As p_0 lies in each of \overline{D}_n , so p_0 belongs to F. Since $\varphi(p_n) = w_n(p_n) = 1$, we conclude that $\varphi(p_0) = 1$. This shows that $p_0 \notin \mathcal{A}$ or $p_0 \in F_{\mathcal{A}}(\partial R - \mathcal{A})$. Thus $F_{\mathcal{A}}(\partial R - \mathcal{A})$ is nonempty. Q.E.D.

Corollary 3.1. The harmonic boundary Δ is nowhere dense in ∂R .

Proof. We have to show that for any $p_0 \in \Delta$ and for any open neighborhood U of p_0 , $U_{\frown}(\partial R - \Delta)$ is non-empty. For this aim, we take an open neighborhood V of p_0 such that $\overline{V} \subset U$. Let $\{R_n\}$ be an exhaustion of R. Choosing a suitable subsequence of $\{R_n\}$, we may assume that $(R_{n+1} - \overline{R}_n) \subset V$, $n=1,2,\cdots$, are not empty. Then, by taking $F = V_{\frown} \partial R$ and $D_n = V_{\frown}(R - \overline{R}_n)$ in Theorem 3, $F_{\frown}(\partial R - \Delta)$ is non-empty and so $U_{\frown}(\partial R - \Delta)$ is non-empty. Q.E.D.

Corollary 3.2. For each end E_k , $E_k (\partial R - \Delta)$ is non-empty.

Proof. We have proved that $E_k = \bigcap_1^{\infty} K_{i_n}^{(n)}$ (cf. (1)). By putting $F = E_k$ and $D_n = K_{i_n}^{(n)}$, the assumption in Theorem 3 is satisfied. Hence $E_k \subset (\partial R - \Delta)$ is non-empty. Q.E.D.

- 5. In his paper [3], Royden asked whether or not a hyperbolic end can contain both points of Δ and $\partial R \Delta$. By Theorem 2 and Corollary 3.2, this can be positively answered, that is, any hyperbolic end contains both points of Δ and $\partial R \Delta$.
- 6. Although R^* is separable, it does not satisfy 2nd countability axiom. Namely,

Theorem 4. No point of ∂R has a countable base of neighborhood system in R^* .

Proof. Contrary to the assertion, suppose that a point p_0 in ∂R has a countable base of neighborhood system $\{U_n\}_1^\infty$. We may assume that U_n , $n=1,2,\cdots$, are open and $\overline{U}_{n+1} \subset U_n$, $n=1,2,\cdots$. We take an annulus A_n in $U_n - \overline{U}_{n+1}$ and construct the function $\varphi(p)$ on R as in the proof of Theorem 3. As φ is in M(R), so it is continuous on R^* and a fortiori at p_0 . Let p_n (resp. q_n) be a point in the interior (resp. exterior) boundary of A_n . Clearly $\{p_n\}_1^\infty$ and $\{q_n\}_1^\infty$ converge to p_0 respectively. By the continuity of φ at p_0 ,

$$\varphi(p_0) = \lim_n \varphi(p_n) = \lim_n w_n(p_n) = 1$$

and at the same time

$$\varphi(p_0) = \lim_n \varphi(q_n) = \lim_n w_n(q_n) = 0.$$

This is absurd. Thus no point in ∂R has a countable base of neighborhood system in R^* . Q.E.D.

Corollary 4.1. Royden's compactification R^* is not metrizable. Corollary 4.2. No point of ∂R is isolated in ∂R .

Proof. Assume that p_0 is an isolated point in ∂R . Then $\{p_0\}$ is a component E_k of ∂R . Then, by (2), there exists a determining sequence $\{K_{i_n}^{(n)}\}$ of E_k such that $\bigcap_{1}^{\infty} \overline{K}_{i_n}^{(n)} = E_k$. Clearly $V_n = \{p_0\}^{\smile} K_{i_n}^{(n)}$ is a neighborhood of p_0 in R^* and $\{V_n\}_1^{\infty}$ forms a base of neighborhood system of p_0 . This is impossible in view of Theorem 4. Q.E.D.

Corollary 4.3. Any end is non-degenerate in R^* .

The last fact shows that there can exist a non-degenerate continuum in ∂R whose points are all irregular points for Dirichlet problem considered in the class of Dirichlet-finite harmonic functions.

References

- [1] M. Nakai: A measure on the harmonic boundary of a Riemann surface, Nagoya Math. J., 17, 181-218 (1960).
- [2] A. Pfluger: Theorie der Riemannschen Flächen, Berlin, Springer (1957).
- [3] H. L. Royden: On the ideal boundary of a Riemann surface, Ann. Math. Studies, **30**, 107-109 (1953).