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1. Let R be an open Riemann surface and M(R) be the totality of
bounded a.c.T, functions on R with finite Dirichlet integrals and Mo(R)
be the totality of functions in M(R) with compact supports. We
denote by M(R)the closure of Mo(R) in BD-convergence topology,
where a sequence {} converges to in BD-convergence topology if
the sequence {} is bounded and converges to uniformly on each

subset of R and the sequence Iffd(q--)/’,,*d(--)lcompact con-

verges to zero.
Royden’s compactification R* of R is the unique compact Haus-

dorf space containing R as its open and dense topological subspace
such that any function in M(R) can be uniquely extended to R* so
as to be continuous on R*. The (Royden’s) ideal boundary of R is
defined by R*--R and denoted by R. The compact set A--{peR*;
f(p)--O for all f in Mz(R)} is a part of R and called the harmonic
boundary of R. We also say that 3R--A is the non-harmonic boundary
of R. These notions are introduced by Royden [3. Our formulation
above mentioned is different from that in [3 but equivalent to that
of Royden. Details are in [1.

In this note we state some topological properties of R* and solve
a question raised in [3.

2. Consider a normal exhaustion {R}7 of R in the sense of

Pfluger [2. The open set R--R is decomposed into a finite number
of non-compact connected components K), K’), K). A determin-
ing sequence is a sequence {K:)}F such that

(’ K(+ (1)+1

If e fix an exhaustion {Rn}, then the totality of determining
sequences corresponds in a one-to-one and onto manner to the totality
of ends of R in the sense of Kerdkjrtd-Stoilow 2. Let {E} be
the decomposition of R into connected components. First we show

Theorem 1. The decomposition {E} can be regarded as the
totality of ends of R in the sense of Kerdkjdrtd-Stolow.

ProoL An end is determined by a sequence (1). Then the in-

tersection --K: is a continuum in 3R, since each K) is a con-



556 M. NkKk [Vol. 36,

nected compact set in R*. There exists a component E in {E} such
that E is not empty. By the definition of E, is contained in

E. Now we show that -E. Contrary to the assertion, assume
the existence of a point P0 in E--. Then we can find a positive

integer n such that P0 lies outside h." Take a closed Jordan curve

c- K" in R. We denoteC in K which is homologous to F=R,....
by D the compact domain in R which is surrounded by E and C.
Let w(p) be the harmonic function defined in D with boundary value
1 on F and 0 on C. We put

( n R--’’,
f()= ) on D;

on K"-D.
Clearly f(p) is contained in M(R) and hence continuous on R *. Thus

f(p)--O on 3R" In particular, f is continuous on E and takes
only two values. 0 and 1. Obviously f=0 on +E+ and 1 at
This is absurd, since E+ is connected. Hence we have proved that
for any end whose determining sequence is +K,+j, we can find an E+
in {E+} such that

+.. (2)
Conversely we assert that for any E in {E}, there exists, an

end whose determining sequence is {K") satisfying (2). For the aim,
take an E in {E} and a point P0 in E. Using the function f(p)
above defined, we conclude that the sets K), K’), K) are mutual-

ly disjoint. Hence the set Kc") containing P0 in its closure is uniquely
determined for each n. Therefore, the sequence K")/ such that

proved that for any E in {E} there exists an end whose determining
sequence is (1) and satisfies (2).

Thus {E} corresponds to the totality of ends of R in a one-to-
one and onto manner. Q.E.D.

From this theorem, we may call E an end of R. Incidently we
have also seen in the above proof that any dividing cycle of R divides
3R.

] Let [ , be the totality of non-negative superharmonic func-

tions u on K") such that at any point P0 in (() ’) R
lira u(p) 1.

We set
K+ inf (u(p); u +

on ("> By Perrons’ theorem, we see that w(p; K(") is a harmonic
(K+) K")R. If none of) with boundary value 1 on ,. +,function on , ,
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W(p; K+:) is constant for a sequence (1), then we say that the end

determined by (1) i.e. E--+K(’) is hyperbolic. If this is not the
case, we say that it is parabolic. Here we remark that the Green’s
function g(p, po) of R is continuous on R* except a point P0 in R
and vanishes on /. Now we prove

Theorem. 2. The following three conditions are mutually equiva-
lent:

a E is a hyperbolic end;
b EA is non-empty;

( c inf (g(p, P0); pE)--0.
Proof. (a) implies (b). Contrary to the assertion, assume that

EA is empty. Then ;’)A is empty for all sufficiently large n.

For each point p in K(") there exists a function f in M(R) such
that f(p)O. Considering f instead of f, we may assume f,0 on

R* Since K") is compact, we can find a finite number of points p

in ) and a positive number c such that
g--yc>O

on K) and clearly g is in M(R). Let ) be Schottky’s double of

K) along (K)--K) R. Restrict g on K") and next extend it to

K) in the symmetric manner. We denote by the above function

thus obtained from g. It is clear that belongs to M(K and

>c0 on ) Since M(K) is an ideal of M(K) and g is in-

(K;") This shows thatversible in M(",‘=,, 1=0/0 belongs to M, ,.,.
K") is a parabolic Riemann surface (cf. 3 and 1) 0n the other

hand, (a) implies that K") is a hyperbolic Riemann surface. This is
absurd. Thus (a) implies (b).

(b) implies (c). In fact, Y(p, P0)-min (g(p, Po), 1) belongs to M(R)
and so Y(p, P0) vanishes on . Hence the same is true for g(p, Po).
Since EJ is not empty, we get (c).

(c) implies (a). To show this we may clearly assume that P0 is

in R We put m inf(g(p, p0);pe(K" ":--K) R)>0 and Uo(p)
K()=m *g(p, P0). Then u0 belongs to , and so
<

As (c) holds, so inf (w(p; Km., pe K:)-0. Thus w(p; K:) is not con-
stant for all n. Hence we get the validity of (a). Q.E.D.

4. Next we consider the distribution of non-harmonic boundary
points in 3R. The following shows that the situation is very com-
plicated and somewhat pathological in the viewpoint of our intuition.

Theorem . Le$ F be a.compac$ se$ in 3R such $ha$ there eists

a sequence {D} of open ses in R satisfying DD+,R, n= 1, 2,
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.., azd F--D. Then F(3R--A) is non-empty.

Proof. Let Un--D--Dn/.,R, n--l, 2,... In U we take two
simply connected Jordan domains V,0 and V, and a point p such

that p e V,V,V,oV,oU and the annulus A= Vn,o-- V. is
conformally equivalent to the annulus (l<lz]< exp (2n7c)). Let w(p)
be a continuous function defined on R as follows:

O on R-- V,0;
w(p)-- harmonic on A;

1 on V..
Then from ffdwnA*dw- 2u/mod A and rood A-- mod(l<:lzl

<:exp (2nz))--2, we get

ffdwn/ *dw-2-’-.

Now we put

and

respectively. Clearly qneMo(R) and {?n]7 is bounded and converges
to uniformly on each compact ubset of R and

ffd(go--On) / *d(g--gn)- ,=+ dw A *dw--2-.
Hence {0n} converges to in BD-convergence topology and so 9eMa(R).
Let P0 be an accumulation point of {p}. As P0 lies in each of D,
so P0 belongs to F. Since 9(pn)--Wn(Pn)--l, we conclude that (p0)--l.
This shows that Po z/ or P0 e F,(aR-- /). Thus F(aR-- z/) is non-
empty. Q.E.D.

Corollary 3.1. The harmonic boundary 1 is nowhere dense in
3R.

Proof. We have to show that for any p0el and for any open
neighborhood U of Po, U.,(aR--A) is non-empty. For this aim, we

take an open neighborhood V of P0 such that VU. Let {R} be an
exhaustion of R. Choosing a suitable subsequence of {Rn} we may

assume that (Rn+*-Rn)f., V, ,--1, 2,..., are not empty. Then, by

taking F= VaR and D--V(R--R) in Theorem 3, F(aR--d) is
non-empty and so U.,(aR--I) is non-empty. Q.E.D.

Corollary 3.2. For each end E, E.,(aR--A) is non-empty.

Proof. We have proved that E=K: (cf. (1)). By putting

F=E and D #") the assumption in Theorem 3 is satisfied. Hence
E,(3R--d) is non-empty. Q.E.D.
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5. In his paper E3], Royden asked whether or not a hyperbolic
end can contain both points of z/ and 3R--z/. By Theorem 2 and
Corollary 3.2, this can be positively answered, that is, any hyperbolic
end contains both points of and 3R--.

6. Although R* is separable, it does not satisfy 2nd countability
axiom. Namely,

Theorem 4. No point of 3R has a countable base of neighborhood
system in R*.

Proof. Contrary to the assertion, suppose that a point P0 in 3R
has a countable base of neighborhood system {U}7. We may assume

that U, n-l, 2,..., are open and U/U, n-l, 2,... We take

an annulus A in U--U/ and construct the function (p) on R as in
the proof of Theorem 3. As is in M(R), so it is continuous on R*
and a fortiori at P0. Let p (resp. q) be a point in the interior
(resp. exterior) boundary of An. Clearly {p}7 and {qn}7 converge to
P0 respectively. By the continuity of 0 at P0,

(Po)- lim,(p,)- lim,w,(p,)- 1
and at the same time

(P0)- lim9(qn)- limw(q)- 0.
This is absurd. Thus no point in aR has a countable base of neigh-
borhood system in R*. Q.E.D.

Corollary 4.1. Royden’s compactification R* is not metrizable.
Corollary 4.2. No point o.f OR is isolated in 3R.
Proof. Assume that P0 is an isolated point in OR. Then {P0} is

a component E of OR. Then, by (2), there exists a determining

sequence t’ of E such that K’=E. Clearly Vn-- {P0}K(.").
is a neighborhood of P0 in R* and { V,}F forms a base of neighborhood
system of P0. This is impossible in view of Theorem 4. Q.E.D.

Corollary 4.3. Any end is non-degenerate in R*.
The last fact shows that there can exist a non-degenerate con-

tinuum in OR whose points are all irregular points for Dirichlet
problem considered in the class of Dirichlet-finite harmonic functions.
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