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134. Some Topological Properties on Royden’s
Compactification of a Riemann Surface

By Mitsuru NAKAI
Mathematical Institute, Nagoya University
(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1960)

1. Let R be an open Riemann surface and M(R) be the totality of
bounded a.c.T. functions on R with finite Dirichlet integrals and M (R)
be the totality of functions in M(R) with compact supports. We
denote by M ,(R) the closure of M (R) in BD-convergence topology,
where a sequence {¢,} converges to ¢ in BD-convergence topology if
the sequence {¢,} is bounded and converges to ¢ uniformly on each

compact subset of R and the sequence { f f d(e, — @) ~ *d(go,——go)} con-

R
verges to zero.

Royden’s compactification R* of R is the unique compact Haus-
dorff space containing R as its open and dense topological subspace
such that any function in M(R) can be uniquely extended to R* so
as to be continuous on R*., The (Royden’s) ideal boundary of R is
defined by R*—R and denoted by 0R. The compact set d={peR*;
S(p)=0 for all f in M,(R)} is a part of dR and called the harmonic
boundary of R. We also say that 9R—4 is the non-harmonic boundary
of R. These notions are introduced by Royden [3]. Our formulation
above mentioned is different from that in [3] but equivalent to that
of Royden. Details are in [1].

In this note we state some topological properties of R* and solve
a question raised in [3].

2. Consider a normal exhaustion {R,}; of R in the sense of
Pfluger [2]. The open set R—R, is decomposed into a finite number

of non-compact connected components K™, K¢, .., K§.,. A determin-
ing sequence is a sequence {K{™}; such that
KPDKPD - DEPDKE D . (1)

If we fix an exhaustion {R,}7, then the totality of determining
sequences corresponds in a one-to-one and onto manner to the totality
of ends of R in the sense of Kerékjart6-Stoilow [2]. Let {E,} be
the decomposition of dR into connected components. First we show
Theorem 1. The decomposition {E,} can be regarded as the
totality of ends of R im the sense of Kerékjdrto-Stoilow.
Proof. An end is determined by a sequence (1). Then the in-

tersection a= K¢ is a continuum in R, since each K{» is a con-
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nected compact set in R*. There exists a component E, in {E,} such
that E, ~a is not empty. By the definition of E,, a is contained in
E,. Now we show that a=F,. Contrary to the assertion, assume
the existence of a point p, in E,—a. Then we can find a positive

integer n such that p, lies outside K. Take a closed Jordan curve
C in K{” which is homologous to I'=R_ (K®—K) in R. We denote
by D the compact domain in R which is surrounded by I and C.

Let w(p) be the harmonic function defined in D with boundary value
lon /7 and 0 on C. We put

1 on R—K{™;
f(p)={ w(p)  on D;
0 on K{™—D.

Clearly f(p) is contained in M(R) and hence continuous on R*. Thus

f(®=0 on 4R K ¢. In particular, f is continuous on E, and takes
only two values 0 and 1. Obviously f/=0 on aCE, and 1 at p,cE,.
This is absurd, since E, is connected. Hence we have proved that
for any end whose determining sequence is {K{”}, we can find an E,
in {E,} such that
Ek=ﬂ§°K%2’. (2)
Conversely we assert that for any E, in {£,}, there exists an
end whose determining sequence is {K{} satisfying (2). For the aim,
take an E, in {E\} and a point p, in F,. Using the function f(p)

above defined, we conclude that the sets K™, K™, - -, K§, are mutual-

ly disjoint. Hence the set K{» containing p, in its closure is uniquely
determined for each n. Therefore, the sequence {K{™} such that

p,e K{® is uniquely determined and is a determining sequence. By

a similar argument as above, we see that E,=NFK ™. Hence we have
proved that for any E, in {E,} there exists an end whose determining
sequence is (1) and satisfies (2).
Thus {£,} corresponds to the totality of ends of R in a one-to-
one and onto manner. Q.E.D.
From this theorem, we may call E, an end of R. Incidently we

have also seen in the above proof that any dividing cycle of R divides
oR.

3. Let UX{ be the totality of non-negative superharmonic func-
tions w on K{ such that at any point p, in (K m—K™) R
lim u(p)=>1.

P>Do

We set

w(p; K§)=1inf (u(p); uwelx:0)
on K{. By Perrons’ theorem, we see that w(p; Ki») is a harmonic
function on K¢ with boundary value 1 on (K{»—K{™) - R. If none of
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w(p; K§) is constant for a sequence (1), then we say that the end
determined by (1), i.e. E,=rKs is hyperbolic. If this is not the
case, we say that it is parabolic. Here we remark that the Green’s
function g(p, p,) of R is continuous on R* except a point p, in R
and vanishes on 4. Now we prove

Theorem. 2. The following three conditions are mutually equiva-
lent:

(a) K, is a hyperbolic end;

(b) E,~4 is non-empty;

(e¢) inf (9(p, po); P E,)=0.

Proof. (a) implies (b). Contrary to the assertion, assume that
E,~4 is empty. Then K ¢ 4 is empty for all sufficiently large n.
For each point p in K%?, there exists a function f, in M,(R) such
that f,(p)0. Considering [} instead of f,, we may assume f,>0 on
R*. Since K § is compact, we can find a finite number of points p,

in K¢ and a positive number ¢ such that

gzzu} Jp,=c>0
on K§” and clearly g is in M,(R). Let K ¢ be Schottky’s double of
K¢ along (K{»—K{) R. Restrict g on K¢ and next extend it to
K { in the symmetric manner. We denote by § the above function
thus obtained from g. It is clear that § belongs to M A(I? ) and

§>¢>0 on K. Since M,(K{™) is an ideal of M(K{™) and ¢ is in-
versible in M(IAQ:)), 1=g/§ belongs to M A(f(g? . This shows that
IA{?,? is a parabolic Riemann surface (cf. [3] and [1]). On the other
hand, (a) implies that IA{?,? is a hyperbolic Riemann surface. This is
absurd. Thus (a) implies (b).

(b) implies (c). In fact, §(p, p,) =min (g(p, p,), 1) belongs to M ,(R)
and so §(p, p,) vanishes on 4. Hence the same is true for g(p, p).
Since E, - 4 is not empty, we get (c).

(c¢) implies (a). To show this we may clearly assume that p, is
in R. We put m=inf (9(p, po); (K —K{™)~R)>0 and uy(p)
=m'g(p, p,). Then u, belongs to NFL> and so

w(p; K$2) <uolp).
As (c) holds, so inf (w(p; K{); pe K{)=0. Thus w(p; K§) is not con-
stant for all n. Hence we get the validity of (a). Q.E.D.

4. Next we consider the distribution of non-harmonic boundary
points in dR. The following shows that the situation is very com-
plicated and somewhat pathological in the viewpoint of our intuition.

Theorem 3. Let F be a compact set in dR such that there exists

a sequence {D,}7° of open sets in R satisfying D,,Dl_)n+1 ~R,n=1,2,
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v, and F=NyD, Then F_(0R—4) is non-empty.
Proof. Let U,=D,—D,.,~R, n=1,2,--- . In U, we take two
simply connected Jordan domains V,, and V,, and a point p, such

that p,eV,,cV,,cV,,CV, U, and the annulus 4,=V,,—V,, is
conformally equivalent to the annulus (1<|z|< exp (2"z)). Let w,(p)
be a continuous function defined on R as follows:

0 on .R— Vn,o;
w,(p)= { harmonic on én;
1 on V,,.

Then from f f dw, N\ *dw, = 2r/mod 4, and mod A, = mod (1<|z|

R
<exp (2"r))=2"r, we get

ffdwn/\ *dwnzz—(n—l).
R

Pu(D)= é w,(p)

Now we put

and .
o(v)= 3} w(p)

respectively. Clearly ¢,e M (R) and {¢,}i" is bounded and converges
to ¢ uniformly on each compact subset of R and

f[d(?’“‘ﬂon)/\*d(ﬁo_ﬁ%): iglf}[dwi/\ *dw, =2,

Hence {¢,} converges to ¢ in BD-convergence topology and so e M ,(R).

Let p, be an accumulation point of {p,}*. As p, lies in each of D,,
S0 P, belongs to F. Since ¢(p,)=w,(p,)=1, we conclude that ¢(p,)=1.
This shows that p,é4 or p,eF - (0R—4). Thus F_(0R—4) is non-
empty. Q.E.D.

Corollary 3.1. The harmonic boundary 4 is nowhere dense in
oR.

Proof. We have to show that for any p,e4 and for any open
neighborhood U of p,, U (0R—4) is non-empty. For this aim, we

take an open neighborhood V of p, such that VCU. Let {R,} be an
exhaustion of R. Choosing a suitable subsequence of {R,}, we may

assume that (R,,,—R,)~V, n=1,2,---, are not empty. Then, by
taking F=V 4R and D,=V - (R—R,) in Theorem 3, F - (dR—4) is
non-empty and so U (0R—4) is non-empty. Q.E.D.

Corollary 3.2. For each end E,, E, - (0R—4) is non-empty.

Proof. We have proved that E,=NrK{™ (cf. (1)). By putting
F=FE, and D,=K{”, the assumption in Theorem 3 is satisfied. Hence
E,  (0R—4) is non-empty. Q.E.D.
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5. In his paper [8], Royden asked whether or not a hyperbolic
end can contain both points of 4 and dR—4. By Theorem 2 and
Corollary 8.2, this can be positively answered, that is, any hyperbolic
end contains both points of 4 and 0R—A.

6. Although R* is separable, it does not satisfy 2nd countability
axiom. Namely,

Theorem 4. No point of OR has a countable base of neighborhood
system in R*,

Proof. Contrary to the assertion, suppose that a point P, in oR
has a countable base of neighborhood system {U,}. We may assume

that U, m=1,2,---, are open and U,,,CU,, n=1,2,--- . We take

an annulus 4, in U,—U,,, and construct the function ¢(p) on R as in
the proof of Theorem 8. As ¢ is in M(R), so it is continuous on R*
and a fortiori at p, Let p, (resp. ¢,) be a point in the interior
(resp. exterior) boundary of A,. Clearly {»,}? and {g.}i’ converge to
P, respectively. By the continuity of ¢ at p,,
o(po) =1im,(p,) =lim,w,(p,)=1
and at the same time
@(po) =1lim,¢(q,) =1lim,w,(q,)=0.

This is absurd. Thus no point in dR has a countable base of neigh-
borhood system in R*, Q.E.D.

Corollary 4.1. Royden’s compactification R* is not metrizable.

Corollary 4.2. No point of R 1s isolated in oR.

Proof. Assume that p, is an isolated point in dR. Then {p,} is
a component E, of 0R. Then, by (2), there exists a determining
sequence {K{} of E, such that NyK=EFE,. Clearly V,={p)}~ K
is a neighborhood of p, in R* and {V,};° forms a base of neighborhood
system of p,. This is impossible in view of Theorem 4. Q.E.D.

Corollary 4.3. Any end is non-degenerate im R*.

The last fact shows that there can exist a non-degenerate con-
tinuum in 9R whose points are all irregular points for Dirichlet
problem considered in the class of Dirichlet-finite harmonie funections.
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