7. On Transformation of the Seifert Invariants

By Joseph Weier
(Comm. by K. Kunugi, M.J.A., Jan. 12, 1961)

The theory of continuous transformations of manifolds shows preference to the case that $\operatorname{dim} X=\operatorname{dim} Y$ or $\operatorname{dim} X>\operatorname{dim} Y$ where X is mapped into Y. The reason is that every continuous mapping of an m-sphere into an n-sphere with $m<n$ is homotopic to zero. We will cast a look on the case $\operatorname{dim} X<\operatorname{dim} Y$.

1. Suppose z, z^{\prime} are two disjoint zero-divisors in the compact manifold X such that $\operatorname{dim} z+\operatorname{dim} z^{\prime} \geq(\operatorname{dim} X)-1$. Then the pair $\left(z, z^{\prime}\right)$ determines [1] a rational interlacing cycle, $\sigma\left(z, z^{\prime}\right)$, as follows. Let a, b be the smallest positive integers satisfying $a z \sim 0$ and $b z^{\prime} \sim 0$, and let A, B be two finite integral chains in X such that $\partial A=a z$ and $\partial B=b z^{\prime}$. Then, if f denotes the usual intersection function,

$$
\frac{1}{a} f\left(A, z^{\prime}\right)=\frac{1}{a b} f(A, \partial B)= \pm \frac{1}{a b} f(\partial A, B)= \pm \frac{1}{a b} f(a z, B)= \pm \frac{1}{b} f(z, B) .
$$

One thus obtains an expression that does not depend on A. Now

$$
\sigma\left(z, z^{\prime}\right)=\frac{1}{a} f\left(A, z^{\prime}\right)
$$

is Seifert's interlacing cycle.
2. Let $2 \leq m<n$ be integers, let M be an m-dimensional and N an n-dimensional oriented differentiable compact manifold, moreover $f: M \rightarrow N$ a continuous mapping. Let P, Q, R, S be pairwise disjoint oriented differentiable compact manifolds in N such that

$$
\begin{aligned}
& p \geq n-m, \quad q \geq n-m, \quad r \geq n-m, \quad s \geq n-m, \\
& p+q+r+s=4 n-m-3, \quad p+q \geq 2 n-m,
\end{aligned}
$$

where p, q, r, s are the dimensions of P, Q, R, S respectively. For instance setting

$$
p=q=r=n-1 \quad \text { and } \quad s=n-m
$$

one confirms at once that the above dimensional suppositions are fulfilled.

The algebraic inverse of P, Q, R, S under f, defined for instance in [4], will be denoted by $z_{P}, z_{Q}, z_{R}, z_{S}$ respectively. Geometrically one can suppose [5] that the inverses of P, Q, R, S are differentiable manifolds. Then $z_{P}, z_{Q}, z_{R}, z_{S}$ is an integral cycle of dimension $p-(n-m), q-(n-m), r-(n-m)$, and $s-(n-m)$ respectively. Let the manifolds P, Q, R, S be defined in such a way that $z_{P}, z_{Q}, z_{R}, z_{S}$ are zero-divisors. That is always possible as one easily confirms. Let z_{T} denote the above defined Seifert interlacing cycle, $\sigma\left(z_{P}, z_{Q}\right)$. By
$\operatorname{dim} z_{T}=\left(\operatorname{dim} z_{P}\right)+1+\operatorname{dim} z_{Q}-\operatorname{dim} M$

$$
=(p-n+m)+1+(q-n+m)-m=p+q-2 n+m+1
$$

and the supposition $p+q \geq 2 n-m$, it follows that $\operatorname{dim} z_{T} \geq 1$.
Let a, b, c be the smallest positive integers such that $c z_{T}$ is an integral cycle and that moreover

$$
a z_{R} \sim 0 \quad \text { and } \quad b z_{S} \sim 0
$$

Let A, B be chains in M satisfying $\partial A=a z_{R}$ and $\partial B=b z_{s}$. Furthermore let Z_{1}, Z_{2}, \cdots be a base of the integral ($r+1$)-cycles in M and $Z_{1}^{\prime}, Z_{2}^{\prime}, \cdots$ be a base of the integral ($s+1$)-cycles in M. Now f being as above the intersection function, we set

$$
\begin{aligned}
& \zeta_{i}=f\left(A+Z_{i}, c Z_{T}\right), \\
& \zeta_{i j}=f\left(\zeta_{i}, B+Z_{j}^{\prime}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{dim} \zeta_{i j}= & \operatorname{dim} \zeta_{i}+\left(\operatorname{dim} z_{S}\right)+1-\operatorname{dim} M \\
= & \left(\operatorname{dim} z_{R}\right)+1+\operatorname{dim} z_{T}-\operatorname{dim} M_{S}+(\operatorname{dim} z)+1-\operatorname{dim} M \\
= & \left(\operatorname{dim} z_{R}\right)+1+\left(\operatorname{dim} z_{P}\right)+1+\operatorname{dim} z_{Q}-\operatorname{dim} M-\operatorname{dim} M \\
& +\left(\operatorname{dim} z_{S}\right)+1-\operatorname{dim} M \\
= & \operatorname{dim} z_{P}+\operatorname{dim} z_{Q}+\operatorname{dim} z_{R}+\operatorname{dim} z_{s}+3-3 \operatorname{dim} M \\
= & p+q+r+s-4 n-4 m+3-3 m=(4 n-m-3)-4 n+m+3=0 .
\end{aligned}
$$

Thus the $\zeta_{i j}$ are integers. The matrix consisting of these numbers is invariant under deformation of f. In order that f is an essential map, it suffices that at least on $\zeta_{i j}$ is not zero. To the matrix $\left(\zeta_{i j}\right)$ there corresponds a comatrix that one obtains by projecting our results in the cohomology rings of M and N, see for instance [2,3].
3. Let r be a positive integer $\leq m-1$ such that every integral homology class of dimension $n-r-1$ and likewise every such class of dimension $n-m+r$ of N permits a realization 3 by an oriented differentiable compact manifold. Now let the ($n-r-1$)-manifolds A_{1}, A_{2}, \cdots and the ($n-m+r$)-manifolds B_{1}, B_{2}, \cdots be bases of the integral ($n-r-1$)-cycles and the $(n-m+r)$-cycles of N. Let z_{i}, z_{i}^{\prime} be the algebraic inverse of A_{i} and B_{i} respectively. Suppose that A_{i} and B_{i} are ordered in such a way that z_{i} is zero-divisor for $i=1,2, \cdots, \alpha$ and only for these i 's, and that z_{i}^{\prime} is zero-divisor for $i=1,2, \cdots, \beta$ and only for these i 's. For all pairs (i, j) satisfying $i \leq \alpha$ and $j \leq \beta$, now let $\sigma_{i j}$ be Seifert's interlacing number of (z_{i}, z_{j}^{\prime}).

Then one again obtains a characteristic matrix ($\sigma_{i j}$) of f that possesses similar properties for the matrix of section 2.

References

[1] H. Seifert: Verschlingungsinvarianten, Sitz. Ber. Preuss. Akad. Wiss., 16, 811828 (1933).
[2] N. E. Steenrod: Cohomology invariants of mappings, Ann. of Math., 50, 954988 (1949).
[3] R. Thom: Sous-variétés et classes d'homologies des variétés différentiables II, C. R. Acad. Sci., Paris, 236, 573-575 (1953).
[4] J. Weier: Immagini inverse dei gruppi di omotopia, Ann. Univ. Ferrara, 8, 29-37 (1960).
[5] H. Whitney: Differentiable manifolds, Ann. of Math., 37, 645-680 (1936).

