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1. Suggested by a well-known theorem of C. H. Dowker [1] that
a topological space is countably paracompact and normal if and only
if the product space XI is normal, we have established the follow-
ing theorem in a previous paper [2].

Theorem 1.1. A opoogieal space X is m-paraeompae ad
tormal if and only if the rodue space XI is nomal, where m
is an infinite cardinal numbe.

Here a topological space X is called m-paracompact if any open
covering of power=<m admits a locally finite open refinement, and I
means the product space of m copies of /, where m is a cardinal
number and I is the closed line interval 0, 1]. A topological space
X is, by definition, paracompact if X is m-paraeompact for any cardinal
number m; furthermore, X is paracompact if X is m-paracompact for
a cardinal number m not less than the power of an open base of X.
Accordingly, Theorem 1.1 gives a new characterization of paracompact
spaces. Of course, " No-paracompact" is nothing else "countably
paracompact ".

The purpose of this paper is to prove the following theorem
which is a generalization of Theorem 1.1.

Theorem 1.2. A topological space X is m-paraeompaet and
nomal if and only if the product space XxC= is normal, where C
is any eompae$ me$rie space containing a$ leas$ $wo points and C=
means the produe$ space of m copies of C, and m is an infinite ear-
dinal number.

As a special case where C is a space consisting of exactly two
points we obtain the following theorem.

Theorem 1.3. A topological space X is m-paraeompae$ and normal
if and only if the rroduet space XxD= is normal, where D is a
discrete space consisting of two points and D means the product
space of m copies of D, and m is a cardinal number>=l.

The space D= is called a Cantor space, and Do is the Cantor
discontinuum.

It should be noted that in case m= No, as far as the "if" part
is concerned Theorem 1.3 gives a stronger form than Dowker’s theorem
while Theorem 1.1 gives a weaker form, and that for a finite cardinal
number m_>_l, Theorem 1.3 is true but Theorem 1.1 is not.
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2. We shall begin with a lemma concerning closed mappings.
Lemm 2.1. Letf bs a dosed continuous mapping of topological

space X oto another" topological spae Y such that f(y) is compact
for each oint y of Y,, i=1,2. If ve put g(, z)=(f(),f,_(2))
X, i=1, 2, the g is a closed ontinuous mapping ofXXz onto

r r.
Poof. Let A be any closed subset of X, xX. Suppose that

(y, )eg(A. Then, for any.open set H of Y such that yeH we have
(HxH),g(A). Hence (f(H)xf(H)),A:. Therefore we
have (f()xf(l/)),A; because, otherwise there would exist
an open set of X, and an open et of X such that (x)A, f(,)G, i1,2 ince f(/)is compact for i----1,2, and we
would have (f(L)f(L)),A= where L,-Y--f(X--G), i-1,
2, since f(L,)G, because of the losedness of f. Therefore (y,
eg(A). This shows that g is a closed mapping.

Remark. If for at lea one i, f, does not satisfy the condition
that f7(y) be compact for each point of Y,, the closedness of the
mapping g is not concluded in general. We shall give an example.

Let X be the space of real numbers and Y: the quotient space
obtained from X by contracting the set of all integers to a point
Yo; let f be the identification map. Let f’X- Y,_ be the identity
map with X.= Ys=[. Then g: XxXffi- Y x Ys defined by g(,)
=(f(z),fs(z)) is not a closed rapping; because, if A--[n0,1

_+2,...}, we have
3. Let Q be a compact Hausdorff space. We shall say that a

topological space X is Q-paracompact, if XXQ is normal.
Theorem 3.1. Let Q and Q’ bs al two sompa Hausdoff

spaces. If Q is eithe a closed subset of Q trr tz c,ttituous image

of Q, then every Q-paracmpact spa is
Poof. Suppose that Q’ is a continuous image of Q;, let f be a

continuous mapping of Q onto Q’. Let X be a Q-paracompact space
and put g(, q)=(, f(q)) for zeX, qeQ. Then g is a closed continuous
mapping of XQ onto Xx Q’ by Lemma 2.1. Since X is Q-paracom-
pact, XxQ is normal, and hence XxQ’ is normal. Therefore X is
Q’-paracompact. In ease Q’ is a closed subset of Q, every O-paracom-
pact space is clearly Q’-paracompact.

Now we are in a position to prove Theorem 1.2. To prove The-
orem 1.2 it is sufficient to prove the following theorem in view of
Theorem 1.1.

Theorem 3.2. Let m be an itfinite cazdinal numbe. Let X be
a topological space. Then the following statements ae equivalent.

(a) X is Im-aracompact.
(b) X is C-paracompsct.
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( c ) X is D-paraompact.
Here C is a compa metric space containing at least two points and
D is a discrete space consisting of two points.

Proof. C is homeomorphic to a closed subspace of I. Hence
we have the implication (a)--(b) by Theorem 3.1. Similarly (b)-(c)
is proved since D is a closed subspace of C. Since every compact
Hausdorff space with an open base of powerm is a continuous image
of a closed subset of D, I is a continuous image of a closed subset
of Dm and hence the implication (c)-(a) is proved by Theorem 3.1.
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