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Ibaraki University
(Comm. by K. KuNuGl, M.J.A., Feb. 13, 1961)

1. We have shown that the fundamental theorem of the Galois
theory remains true for finite factors [3] as same as for simple
Noetherian rings. Subsequently, in this note, we shall discuss about
the so-called extension theorem® for finite factors.

We denote by A a continuous finite factor standardly acting on
a separable Hilbert space H and by G a finite group of outer auto-
morphisms of A. Put B the set of all elements invariant by G. B is
a subfactor of A. Now let C and D be two intermediate subfactors
between A and B, then by the fundamental theorem of the Galois
theory, there correspond the Galois groups E and F for C and D
respectively. That is, £ and F are subgroups of G by which C and
D are shown as the sets of elements invariant by E and F respectively.
Then we may give the extension theorem in the following form.

THEOREM. Let o be an isomorphism between C and D fixing every
elements of B, then o may be always extended to an automorphism
of A which belongs to G.

2. We shall begin with some preliminaries. By A’ we mean the
set A equipped with the inner product {a’|b’)=r(ab*) defined by the
standard trace - of A. As well known, A is faithfully represented
on the completion Hilbert space of A°. The representation is spatially
isomorphic to A acting on H, whence we may identify the representa-
tion with A and so A’ with a dense subset of H. Thus 1°cH gives
a trace element of A. The subspace [1°C]? of H belongs to C'. Since
C'C B’ it belongs B’ too. Hence its relative dimension dim [1°C]
with respect to B’ is meaningful.

As well known, the automorphism group G permits a unitary rep-
resentation {u,} on H such that 2=w}zu, for zcA. Furthermore,
as shown in [3], putting z"=u}z'u, for 2'€¢A’, G can be seen as a
group of outer automorphisms of A’. Hence we may construct the
crossed product GR® A’ of A’ by G, cf. [2]. This can be understand
as a von Neumann algebra acting on a Hilbert space H composed of
all functions defined on G taking values in H. We show by >},9Q®¢,
a function belonging to H which takes value ¢, at geG. Then a'eA’

1) Refer to [5] for the theorem of rings with the minimum condition.
2) [1°C] means the metric closure of the set {1°¢|ceC}.
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and g,€G define operators a’* and g¥ on H respectively such that
(Zﬂ g®¢0)a,k=209®¢va,! (Eyg®¢g)g#220 ggo®¢gugo'

Then the crossed product G® A’ is isomorphic to the factor B’ gener-
ated by {a'*|a’cA’} and {g¥|g,€G}. It is not hard to see that B’ acts
standardly on H and its commutor B is generated by {a’'|acA} and
{g519,€G} such that

C9®0)a'=33,9®¢,0% (33, 9®¢,)06=3], 959 ®¢,, (cf. [6]).
In the below we show {a'#|a’cA’} and {a"|ac A} by A’ and A respect-
ively.

8. LEMMA 1. dim, [1°C]=1/m where m is the order of the group E.

Proof. We have shown in [3: Lemma 6] that the restriction of
B’ on a subspace of H having a relative dimension 1/n (n is the order
of the group G) with respect to the commutor B of B’ is spatially
isomorphic to the commutor B’ of B acting on H.

Since B’ acts standardly on H, by the above notice and [1: p. 282,
Prop. 2] we get dimg[1°B]=(1/n) dim,[1°B’]. Since [1°B']=H, dim,
[1°B']=1. Therefore dimg[1°B]=1/n. Similarly dim,[1°C]=1/m.
As C'CB,

dim, [1°C]=dim. [1°C]=1/m. q.ed.

Analogously, for D, dim, [1°D]=1/m’, where m' is the order of F.

LEMMA 2. If there exists an isomorphism o between C and D
such as stated im the theorem, [1°C] s equivalent to [1°D] with
respect to B, that is, m=m'.

Proof. If we put (1’°c)v,=1%° for ceC, since by the definition of
the inner product of A°,

L’¢| 1% y=rz(cc}), (1% |1’%;)=1(c’ci*)=r(cc¥),
whence v, gives an isometric linear mapping from [1°C] onto [1°D].
Now denote by [1°C]! the ortho-complement of [1°C]. Then every
peH is decomposed into ¢p=¢,+¢, where ¢,c[1°C], ¢, €[1°C]L. We
define v, by ¢v,=¢.w,, then v, is a partial isometric operator defined
on H having the initial domain [1°C] and the range [1°D].

Next we show v,eB’. Denote by & the conditional expectation
conditioned by C in the sense of Umegaki [7], which projects A onto
C. Then a’=a‘"+a,, where a, e[1°C]+ for acA. Since a‘cC, we have

a’v,=a""v,=a""’.
For beB,
a®v,b=a'"b=(a*"b)’=(a*b)’.
On the other hand we have
a’bv, = (ab)’v, = (ab)""v,=(a'd)’v, =(a'd)"’.
Since A’ is dense in H, we get v,b=bv, i.e. v,eB’. q.e.d.

By Lemma 2 we know that there exist trace elements ¢, and ¥,
(t=1,2,---,m) of C and D respectively in H, by which H decomposes
orthogonally into such as
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H=[¢,C1®[¢.L1D - ®[p.Cl=[¥,D]D[¥.D]D- - - ®[¥, D].
In this case we may assume ¢,=v¥,=1°. Putting (¢.c)u,=v.c° for ceC
(#=1,2,---,m), we get a unitary operator u, on H.
LemMMA 3. wu.c°=cu, for every ceC.
In fact, for ¢z (xeC),
eauc’ =yacc’ =Y (xc) =pxcU,.

As o fixes every element of B, u,b=bu,, that is, u,¢B’. Now
let N be the set of all elements of B’ satisfying yc"=cy for every
ceC. By Lemma 3, u,eN.

LEMMA 4. N=Cu,=u,D’.

Proof. For yeN, yc'=cy implies cyu}=yc'u*=yu*c, whence
Nu}C(C, that is, NCC'u,. Conversely, for ze¢C', czu,=zcu,=zu,c’
means C'u, CN. Hence we get N=C'u,. On the other hand we have

cuXcu,=urecu,=u*c'cu,=u*c'u.cc.
This means u*C'u,CD’, ie. Cu,Cu,D'. By a similar calculation,
u,D’'CCu,. Thus we get N=Cu,=u,D’.

4. LEMMA 5. Any non-trivial subspace of H does mot reduce
every element of B’ and A.

We say this fact briefly H is irreducible with respect to A and
B’. This lemma is derived from the proof of [2: Theorem 1].

Since B’ is algebraically isomorphic to B’, there is a subfactor
D’ of B’, which is isomorphic to D'. Hence IV is. algebraically iso-
morphic to the crossed product F®A’ of A’ by F and it is generated
by A’ and {f*|feF} on H (cf. [2: Theorem 2]. The group G is
decomposed by the subgroup F' into mutually disjoint cosets G=g,F—
g, F—~...—g F where l=n/m—1 and g,=1. We show by K, the subspace
of H composed of all functions which vanishes on whole G except a
coset g, F. Then, corresponding to the decomposition of G, H decom-
poses into mutually orthogonal subspaces as follows: H=K,®K,®- - -
®K,. Especially K, is identified with the space of all functions defined
on F taking values in H and so D’ acts standardly on K,. Hence K,
is irreducible with respect to A and I by Lemma 5. Furthermore
we get

LEMMA 6. Every K, is irreducible with respect to A and IY.

Proof. g;¥ is a unitary operator belonging to B and it satisfies
Kyg:*=K, and g;¥a*=a%g;*. Hence a subspace V of K, reduces every
element of 4 and I if and only if a subspace Vg: of K, has the same
property. Thus the irreducibility of K, leads to that of K,.

Let N be the image of N by the isomorphism of B’ onto B’ and
u, be the operator corresponding to u,€B’ defined in §3 by this iso-
morphism. Put N’=[(1®1°)N]® and C""=[(1®1°)C"].

LEMMA 7. N’ is irreducible with respect to A and D',

3) 101° means the function 339 ® ¢, such that ¢;=0 for g1 and ¢,=1°.
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Proof. As N=u,D', N’ DOu’DY, whence N’ reduces every element
of Y. N=C'u, implies N°C[C”u,] and so [N’A]=[C"’u,A]=
[C"’Au,]C[C’°u,]=N"’ because C’ reduces every element of A. Hence
N’ is invariant by A and I¥. Since, for a given d’'cD’, there is a
¢’ eC’ such that d'u*=wu*c’, a subspace of V of N’ is invariant by A
and 2¥ if and only if a subspace Vu* of C’ is invariant by A and C’.
By Lemma 5, C’°, on which C’ acts standardly, is irreducible with
respect to A and C’. Therefore V=0 otherwise V=N".

LEMMA 8. Let p, be the projection from H onto K,, then N°p,=0
or N'p,=K,.

Proof. Clearly p, commutes with elements of I¥. Furthermore

s 9. Q)b n, =3, 9.f Qpa? =, 9.f Qp)na’,
that is, », commutes with elements of A. Hence N’p, is a subspace
of K, invariant by A and IY. By Lemma 6, K, is irreducible with
respect to A and D’ and so N°p,=0 or N’°p,=K,.

LEMMA 9. If N’p,=K,, p, gives a one-lto-one bicontinuous map-
ving of N° onto K,.

Proof. Since the kernel of p, is a subspace invariant by 4 and
DV, its intersection with N’ is 0 or N’ itself. By the assumption
N'p,=K,, N’ is not in the kernel. Thus p, is one-to-one. The continuity
of the inverse mapping ;! follows from the well-known theorem of
Banach space.

To simplify the notations, we denote by zy and z,, the restriction
of x on N’ and K, respectively. Then, as seen from the proof of
Lemma 8, we get

op'a'kp =0’ P fAD=0 %, epilahp,=pak,
for ¢eK,. ¢: maps K, isometrically onto K, and by the definitions
of operators a'#, a’, f#, we get

po MG e=0a't, o0 FoGi=0ll portatedi=pal
for ¢cK,.

LEMMA 10. There exists a K; such that N'=K,.

Proof. If there exist p, p,(¢%7) such that N’p,&-0, N’p, =0,
we put pt=0g:%p;'p,g; for peK, t maps K, into itself and, by the
relations stated before the lemma, it commutes with elements of DY,
and satisfies

alit=ta’.
Since ¢ is in the commutor of DYy, it permits an expression such that
pt=9>, (f'a}) for g¢eK.,
Hence, as operators defined on K, we get
S, (Faev=a S, f'a) ie S, faat) =5, faa.
This means a,a’=a%’a,. Since g,¢¢,F and G is outer, a,=0 and so t=0
by [2: Lemma 1]. This is a contradiction. Hence, there is only one
p, such that N°p,==0. In other words, N°C K,. By the irreducibility
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of K, with respect to A and IV, N'=K,. q.ed.

5. Proof of the Theorem. Since u,€B’, it has an expression such
that u,=>), u,a). On the other hand u,eN and by Lemma 10, u!cK,.
Therefore if g ¢ g, F, a,=0. Hence u, has an expression such that

U= un‘ (2] ula’t,ld) = ua‘d,y
where d'=3],u,a;,eD'. d' is a unitary operator and by Lemma 3
' =d*ujcu,d’.
Thus ugeu,=d'c’d’*=c’,
because c¢’eD. This means that the isomorphism ¢ between C and D
coincides with the action of g, on C and so ¢ can be extended to the
automorphism g, of A.

REMARK. In the proof of theorem, we have not make any
restriction for the choice of a representative g, from the coset g.,F.
Therefore we may say, as a version of the theorem, that there corre-
sponds a coset g,F' of G for the isomorphism ¢ stated in the theorem.

As a consequence of the theorem, we know that G exhausts the
automorphisms of A which leave B elementwise fixed. Transferring
to the commutors, this means that an inner automorphism of G® A4’
which preserves A’ induces to A’ an automorphism belonging to G
up to inner automorphisms of A’. This is a theorem shown in the
preceding paper [4] restricted within finite groups G.
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