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31. Convergence to a Stationary State of the Solution of Some
Kind of Differential Equations in a Banach Space

By Hiroki TANABE
(Comm. by K. KUNUGI, M.J.A., March 13, 1961)

1. Introduction. The purpose of this note is to investigate the
behaviour at ¢=co of the solution z(f) of some type of differential
equation

da(t)/dt=A(t)x(t) +1(2), (1.1)
in a Banach space X. Roughly speaking, if A(f) and f(tf) have some
properties and if both of them converge in some sense as {—>oo, then
the solution z(t) also converges to some element as ¢— oo,

2. Assumptions and the theorem. By Y we denote the set of
all the complex numbers 1 satisfying —f<<arg 1=<6, where 6 is a fixed
angle with n/2<f<x.

Assumption 1°. For each ¢, 0<t< o, A(t) is a closed additive
operator which maps a dense subset of X into X. The resolvent set
p(A(t)) of A(t), 0=t< o, contains X and the inequality

[1AI—A@)*||l=M/(|2]+1) (21)
is satisfied for each 2¢2X and te[0, «), where M is a positive constant
independent of 4 and ¢.

2°. The domain D of A(f) is independent of ¢ and the bounded
operator A(t)A(s)"! is Holder continuous in ¢ in the uniform operator
topology for each fixed s;

| A@)A(s) ' — A(r)A(s) ! ||l=K|t—]’,
K>0, 0<p<1, 0=<t, r<oo, (2.2)
where K and p are positive constants independent of ¢, » and s.

3°. f(t) is uniformly Holder continuous in 0<t< oo:

IF@)—f@E) [|=F(t—s), F>0, 0<r=<1, 0=<s, t<o, (2.3)
where F' and 7 are some constants independent of s and ¢.

4°. There exist a closed operator A(o) with domain D and an
element f() of X such that

|| (A(&)— A(0))A(0)*||>0, ||f()—S()||>0 (24)
as t—>oo,

Theorem. Under the assumptions made above, the solution x(t) of
(1.1) converges to some element as t—>oo. The limit x(co) belongs to
D and satisfies

A(o0)m(o0)+f(0)=0. (2.5)
Moreover, dx(t)/dt tends to 0 as t—>co.

It might be possible to make a similar observation about the
kind of equations investigated by Prof. T. Kato. Such equations
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are assumed to satisfy the weaker assumptions that, for some natural
number I, A(t)""* has a domain independent of ¢ and A(t)"*A(s)™ '’ is
Holder continuous with some exponent >1—1/I. But very complicated
computations would be needed in order to deduce a similar result as
above for such kind of equations.

3. The proof of the theorem. By Assumption 1°, each A(s)
generates a semi-group exp (tA(s)) of bounded operators and it satis-
fies

|lexp (£A(8)) || = Ne = (8.1)

|| A(s) exp (tA(s)) || < Le '/t (3.2)
for 0<t< o and 0<s<o, where N, L and a are some positive con-
stants which are dependent only on M and 4. The fundamental solu-
tion U(Z,s) of (1.1) can be constructed as follows [1]:

U(t, 8)=exp ((t—8)A(s))+ W(t, s), 3.3)

Wit s)= f " exp (t—0)A(0)) R(s, 8)do, (3.4)

R(t, s)= ;S‘; R,(t, s), (3.5)

R,(¢, 5)=(A(t)—A(s)) exp ((t—s)A(s)), (3.6)
R,(t, 5)= f "R, 0)R,_\(0, 8)do,

| m=2,3,--- . 3.7

For the sake of simplicity, we assume p=1. In what follows, we
denote by C constants which depend only on M, 6, K and p(=1). If
we put

Sup || (A®)—A()NA() ™ ||=7(z) (3.8)
Sup [LAO)—A8)]|=5(), (3.9)

both of the right members tend to 0 as r—>o by assumptions. By
(2.2) and (3.8), we have

([ (A®)— A(8))A(8) ! || < VK V() (t—9)?, (3.10)
hence
| Ry(t, 8) || < VK Lp(z)(t—s) te-=-» (3.11)
for any ¢>s=>r. Induction argument shows that for any m=>1,
| RBa(, 8) ||

<(WK LJn(r))me~~<t-s>(t—s)%—‘r(_;_)"/ r(l;"_) (3.12)
Using a rough estimate
ﬁlam-!/r(m/z)gs exp (2d%), d>0

we obtain

| B(2, 8)[| < 8T (/20K Lfy(z)(t—s) ¥ exp {—B/ ()t —5)),  (3.13)
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where 8'(r)=a—2rxKL*)(z). As in the proof of Lemma 1.2 of [1], we
also obtain for {>o¢>s=7 that,
” R(t’ 8)—R(09 3) ”

éCAfv(—r)e-Kr)(u_o{ (tt——lgi + (t_:)(—aa_s)i

+(t—a )klog t—s +(t—-a>i} (3.14)
t—s t—o t—s
where fA(z) is some function less than §'(z), and that
Il A(t){exp ((¢—8)A(s)) —exp (E—s) A}
<Ce " ®\y(z)(t—s)*. (8.15)
The following two inequalities are the direct consequences of (3.14)
and (3.15):

|/ Aexp (¢~ o) Ao) —exp (¢~ ) AN R, o)

< CVq(z) e -9t —g) (3.16)
|f 4®) exp (- ) A@) R, 9)— Ret, )
<Cn(@) e Fe-2{(t—s) " +1). (3.17)

By (3.13), (3.16) and (3.17) as well as the formula (1.21) of [1], we
readily obtain

A W(E, 8) || <CVp(c) e P¢{(t—s)d +(t—s) 3 +1).  (3.18)
On the other hand, by (2.3) and (3.9), we get

1AE)—£(8) || < VF A32) (t—s) = (3.19)

for t>s=>r, therefore we obtain

||f A() exp (t—9) As)(Ae) —f(t))ds“
é(%%)”? {o(z) (3.20)

assuming t+41>7 without restriction. Similarly

“f "A(t)lexp (t—5)A(s)—exp «t—s)A(t»ms)dS“

=<CVn(z) sup [|fE) . (8.21)

By (3.1), (3.20) and (3.21) together with a formula in the proof of
Theorem 1.3 in [1], we obtain

[ A@)x(@)+1@) || = || A@) U, 7)(c) || +Ce~*~ sup || £(€) ||
ORI 1+ (L+ 2 ) WV 56 + G (@) sup 7@, (322
for sufficiently large r, where 5”(z) is a positive function which is

bounded away from 0 for these values of . Let ¢ be any positive
number. Then we can select r so large that the sum of the last
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three terms of the right member of (3.22) is less than ¢/2. After
fixing ¢ arbitrarily as above, we can make the sum of the remaining
terms less than ¢/2 by taking ¢ sufficiently large. Thus we have
proved that

A@)x(t)+f(t)>0 as t—>oo. (3.23)
As f(t) tends to f(c) by assumption, A(co)x(t)=A(c0)A(t) 1A(t)x(t)
tends to —f() and z(t)=A(c) *A(0)x(t) to —A(cc) f(c) which we
denote by x(c). Clearly, (o) satisfies (2.5). As «(f) is the solution
of (1.1), dx(t)/dt tends to 0 by (3.23).
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