52. On Outer Automorphisms of Certain Finite Factors

By Masahiro Nakamura*) and Zirô Takeda**)
(Comm. by K. Kunugi, m.J.A., April 12, 1961)

1. In a recent paper [4], T. Saitô proved a remarkable theorem: If A and B are finite continuous factors, and if G and H are countable groups of automorphisms of A and B respectively, then one has (in the notation of [3])
$(G \times H) \otimes(A \otimes B)=(G \otimes A) \otimes(H \otimes B)$, where the action of $g \otimes h$, with $g \in G$ and $h \in H$, on $A \otimes B$ is defined by (2) $(a \otimes b)^{\otimes \otimes n}=a^{g} \otimes b^{h}$,
(in (2), a^{g} and b^{h} indicate the actions of g and h on $a \in A$ and $b \in B$ respectively). Besides that Saitô gave an interrelation between the crossed and direct products of von Neumann algebras, it is remarkable that Saitô's theorem implies a theorem [4; Thm. 2], which may shed a light on the classifications of finite continuous factors in future.

However, in an approach of the crossed product of von Neumann algebras presented by the authors [3], it is unsatisfactory that Saitô remains to prove a fact that $G \times H$ is a group of outer automorphisms of $A \otimes B$ if G and H are groups of outer automorphisms of A and B respectively. The purpose of the present short note is to supply it by a help of a classical technique due to Murray and von Neumann [2].
2. The precise statement is as follows:

Theorem. If g and h are automorphisms on finite continuous factors A and B respectively and at least one of them is outer, then $g \otimes h$ defined by (2) is an outer automorphism of $A \otimes B$.

Proof. It is sufficient by [1; Chap. 1, §4, Prop. 2] that $g \otimes h$ is outer on $A \otimes B$. To prove, it is not less general to assume that g is outer. If $g \otimes h$ is inner on $A \otimes B$, then there is a unitary operator u in $A \otimes B$ such that

$$
\begin{equation*}
(a \otimes 1) u=u\left(a^{g} \otimes 1\right) \tag{3}
\end{equation*}
$$

Now, by a classical argument due to Murray and von Neumann [2; Chap. II], each operator in (3) can be described by a matrix with entries belonging to A :

$$
a \otimes 1 \sim\left(\begin{array}{cccc}
a & 0 & 0 & \cdots \\
0 & a & 0 & \cdots \\
0 & 0 & a & \cdots \\
& \cdots & \cdots
\end{array}\right), \quad a^{g} \otimes 1 \sim\left(\begin{array}{cccc}
a^{g} & 0 & 0 & \cdots \\
0 & a^{g} & 0 & \cdots \\
0 & 0 & a^{g} & \cdots \\
& \cdots & \cdots
\end{array}\right),
$$

[^0]and
\[

u \sim\left($$
\begin{array}{cccc}
u_{11} & u_{12} & u_{13} & \ldots \\
u_{21} & u_{22} & u_{23} & \ldots \\
u_{31} & u_{32} & u_{33} & \ldots \\
& \ldots & \ldots
\end{array}
$$\right)
\]

Computing both sides of (3), one has easily
$a u_{i j}=u_{i j} a^{g}$,
for any $a \in A$ and $i, j=1,2, \cdots$. Since g is outer and A is a finite continuous factor, (4) implies at once by [3; Lemma 1] $u_{i j}=0$ for all i and j, which is a contradiction.

References

[1] J. Dixmier: Les Algèbres d'Opérateurs dans l'Espace Hilbertien, Gauthier-Villars, Paris (1957).
[2] F. J. Murray and J. von Neumann: On rings of operators, Ann. of Math., 37, 116-229 (1936).
[3] M. Nakamura and Z. Takeda: On some elementary properties of the crossed products of von Neumann algebras, Proc. Japan Acad., 34, 489-494 (1958).
[4] T. Saitô: The direct and crossed product of rings of operators, Tôhoku Math. J., 11, 299-304 (1959).

[^0]: *) Osaka Gakugei Daigaku.
 **) Ibaraki University.

