52. On Outer Automorphisms of Certain Finite Factors

By Masahiro NAKAMURA^{*}) and Zirô TAKEDA^{**} (Comm. by K. KUNUGI, M.J.A., April 12, 1961)

1. In a recent paper [4], T. Saitô proved a remarkable theorem: If A and B are finite continuous factors, and if G and H are countable groups of automorphisms of A and B respectively, then one has (in the notation of [3])

(1) $(G \times H) \otimes (A \otimes B) = (G \otimes A) \otimes (H \otimes B)$, where the action of $g \otimes h$, with $g \in G$ and $h \in H$, on $A \otimes B$ is defined by (2) $(a \otimes b)^{a \otimes h} = a^{g} \otimes b^{h}$, (in (2), a^{g} and b^{h} indicate the actions of g and h on $a \in A$ and $b \in B$

respectively). Besides that Saitô gave an interrelation between the crossed and direct products of von Neumann algebras, it is remarkable that Saitô's theorem implies a theorem [4; Thm. 2], which may shed a light on the classifications of finite continuous factors in future.

However, in an approach of the crossed product of von Neumann algebras presented by the authors [3], it is unsatisfactory that Saitô remains to prove a fact that $G \times H$ is a group of outer automorphisms of $A \otimes B$ if G and H are groups of outer automorphisms of A and B respectively. The purpose of the present short note is to supply it by a help of a classical technique due to Murray and von Neumann [2].

2. The precise statement is as follows:

THEOREM. If g and h are automorphisms on finite continuous factors A and B respectively and at least one of them is outer, then $g \otimes h$ defined by (2) is an outer automorphism of $A \otimes B$.

Proof. It is sufficient by [1; Chap. 1, § 4, Prop. 2] that $g \otimes h$ is outer on $A \otimes B$. To prove, it is not less general to assume that g is outer. If $g \otimes h$ is inner on $A \otimes B$, then there is a unitary operator u in $A \otimes B$ such that

 $(3) \qquad (a\otimes 1)u = u(a^{q}\otimes 1).$

Now, by a classical argument due to Murray and von Neumann [2; Chap. II], each operator in (3) can be described by a matrix with entries belonging to A:

a⊗1~	(a	0	0	••• \),	$a^{g} \otimes 1 \sim$	(a ^g	0	0),
	0	a	0	• • •			0	a^{g}	0	
	0	0	a	•••			0	0	$a^{g}\cdots$	
		•••		•••• /	/			•••	•••)	

*) Osaka Gakugei Daigaku.

**) Ibaraki University.

and

$$u \sim \begin{pmatrix} u_{11} & u_{12} & u_{13} \cdots \\ u_{21} & u_{22} & u_{23} \cdots \\ u_{31} & u_{32} & u_{33} \cdots \\ & & & & & & & & & \end{pmatrix}.$$

Computing both sides of (3), one has easily (4) $au_{ij}=u_{ij}a^{g}$, for any $a \in A$ and $i, j=1, 2, \cdots$. Since g is outer and A is a finite continuous factor, (4) implies at once by [3; Lemma 1] $u_{ij}=0$ for all i and j, which is a contradiction.

References

- J. Dixmier: Les Algèbres d'Opérateurs dans l'Espace Hilbertien, Gauthier-Villars, Paris (1957).
- [2] F. J. Murray and J. von Neumann: On rings of operators, Ann. of Math., 37, 116-229 (1936).
- [3] M. Nakamura and Z. Takeda: On some elementary properties of the crossed products of von Neumann algebras, Proc. Japan Acad., 34, 489-494 (1958).
- [4] T. Saitô: The direct and crossed product of rings of operators, Tôhoku Math. J., 11, 299-304 (1959).