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45. A Note on Hausdorff Spaces with the Star-finite
Property. 11

By Kei6 NAGAMI
(Comm. by K. KUNUGI, M.J.A., April 12, 1961)

K. Morita [4] constructed, for every metric space R, a 0-dimen-
sional metric space S and a closed continuous mapping f of S onto R
such that f-'(x) is compact for every point x of R. The purpose of
this note is to give an analogous proposition to this theorem for the
case when R is paracompact Hausdorff. As for the terminologies and
the notations used in this note, refer to my previous note [7].

Theorem 1. Let f be a closed continuous mapping of a regular
space R onto a topological space S with the star-finite property such
that f~Y(y) has the Lindelof property for every point y of S. Then
R has the star-finite property.

Proof. Let U be an arbitrary open covering of K. For every
point y of S let U,={U,; ac A} be a subcollection of It which consists
of countable elements such that U, covers f~'(y). Let U,=“{U, «a
€A} and V,=S—f(R—U,). Then V, is an open neighborhood of y.
Let B={V,; Be B} be a star-finite open covering of S which refines
{V,;yeS}. Let us define a (single-valued) mapping ¢ of B into S
such that ¢(f)=y yields V,CV,. Let W,=f"%V,) and W,=f"(V)).
Then we can prove that W={W,NU,; ac Ay, fc B} is a star-counta-
ble open covering of R.

To show that W covers R, let © be an arbitrary point of R.
Then there exists f¢B such that xe W,. Since V,CV,,, we get W,
CWew. Since WopyCUpp and Uyp="-{U,; ac Ay}, there exists an
acd,, such that xeU,. Hence B is an open covering of E. On the
other hand the star-countability of W is almost evident. Therefore
we can conclude that R has the star-countable property. Since in
general a regular space with the star-countable property has the
star-finite property by Yu. Smirnov [9],” R has so and the theorem
is proved.

Theorem 2. Let R be a non-empty paracompact Hausdorff space.
Then there exist a paracompact Hausdorff space A with dim A=0
and a closed continuous mapping f of A onto R such that f~*(x) is
compact for every point x of R.

Proof. Let {§,={F,; acA,}; 24} be the collection of all locally
finite colsed coverings of R. Let A be the aggregate of points a

1) This theorem is also almost essentially proved in Morita [5].
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=(a,; A€4) of the product space II{A;; 1€ 4}, where A, are topological
spaces with the discrete topology, such that ~{F,; i€ A}+-¢. When
~{F,; 2e4} is not empty, it is a single point. Define f:A—->R as
f(@)=~(F, @y A€ 4}, where r; B—>A, 2ec4, is the restriction of the
projection defined on IIA4, into A,, It can easily be seen that f is
continuous and onto.

To show the closedness of f, let B be an arbitrary non-empty
closed subset of A and z an arbitrary point of f(B). Let 2 be an
arbitrary element of A. Let B,={a; xcF,eF,}; then U,=R—{F,;
acA,—Bj} is an open neighborhood of = by the local finiteness of &,.
Since f(B)~U,%9¢, it holds that B~ f(U,)¥¢. Since fY(U)C—
{r:"Y(a); ac By}, there exists an index a(i)e B, with =, (a(2))~B=4.

Let a=(a(2); A€ 4); then it is easy to see that f(a)=x. Since,
for any 1, =, (z(a))~B=n,""(a(l))~B=x¢, a is a point of B=B.
Therefore we get z=f(a)ef(B) and hence f(B)Cf(B). Thus the
closedness of f is proved. Moreover f~'(x) is compact, since f '(x)
=II{B,; A€ 4} and B, is finite for every icA.

Finally let us prove that A is a paracompact Hausdorff space
with dim A=0. Let U be an arbitrary open covering of A; then U
can be refined by a covering B whose elements are open and closed,
by the equality ind A=0. Since, for any xze¢R, f !(x) is compact,
there exist a finite number of elements V_,, .-, V, .., of B with
@V~ -~V ney=W,, where we can put V,,=¢, zeR,
without loss of generality. Put D(x)=R— f(A— W,); then there exists
an index 2,¢4 such that ¥, refines {D(x); xcR}. Since i) {r;X(a); ac
A;} refines {f~(D(x)); xR} and the latter refines {W,; xeR} and ii)
the order of {z3;(a); acA,} is 1, we can prove, by an easy transfinite
induction on xzeR, the existence of an open covering {U,; xR} of
order 1 with U,CW, for every zcR.

Let €={U.~(V.,—35V.,); ©=2, ---,m(z), zcR}; then € is an
open covering of A of order 1 which refines UI. Thus A is a para-
compact Hausdorff space with dim A=0 and the theorem is proved.

Remark. An analogous result to our Theorem 2 has been obtain-
ed independently by V.Ponomarev [8]. He proves that for any normal
space R there exist a completely regular space A with ind A=0 and
a closed continuous mapping f of A onto R such that i) f(x) is
compact for every z of R, ii) f(A,)%R for any proper closed subset
A, of A2 iii) tA=cR, where A and rR denote respectively the
topological weights® of A and R. We shall show in the following
that this theorem is valid even if R is completely regular. He says

2) A mapping with this property ii) is called irreducible.
3) The topological weight of a topological space is the minimum of the cardinal
numbers of its open bases.
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also that A cited in his theorem is normal. But it seems that, as
far as I know, there has been no paper which assures the normality
of A. I hope that he will make a public expression of his proof.

Lemma 1. Let R be a topological space, S a space and f a map-
ping of R onto S such that f~'(y) is compact for every point yeS.
Then there exists a closed subset R, of R such that f|R, is irreductble.

Proof. Let F={F,; ac A} be the family of all closed subsets F', of
R such that f(F,)=S. Let us introduce into & the semi-order <such
that F,<F, if and only if F,DF, Let & ={F,; acA,} be an arbitrary
linearly ordered subset of & and ¥ an arbitrary point of S. Then
{F.~f'(¥); a€ A,} has clearly the finite intersection property. Hence
~{F,; ac A}~ f'(y) ¢, which proves ~{F,; acA4,}edF. Thus &, has
an upper bound in §. Therefore by Zorn’s lemma § has a maximal
element R,. f|R, is evidently irreducible.

Theorem 3. Let R be a non-empty completely regular space.
Then there exist a completely regular space A and a closed continu-
ous mapping f of A onto R which satisfy the following conditions.
(1) f (=) s compact for every point xcR.

(2) f s irreducible.
(38) ind A=0.
(4) A<zR.

Proof. Embed R densely into a compact Hausdorff space S with
tR=1S; this is possible. Let U={U, &éc5} be an open basis of S
with | & |=7R. Let M={M,; 0e2,} be the family of all finite subsets
M, of E; then |M|=|E5|=zR. Hence we have |F|=zR, where F
={%;0e2}={F.={Us e M)}; M,eM, —{U;cM}=S}. Consider the
product space II{}M,; 62X}, where M, are topological spaces with the
discrete topology. Then <II{M,; seX}<|M|=7R. Let B be the
aggregate of points a=(&(o); o€ 3) of IIM, such that ~U,,,%¢. Then
tB<IIM,<tR. When~{U,,; 03} is not empty, it consists of a
single point. Define g:B—>S as g(a)=~{U, w; scZ}. Then by the
same argument used in the proof of Theorem 2 we can know that i)
B is a compact Hausdorff space with dim B=0, ii) g is continuous
and onto.

Let A,=g '(R) and g,=g|A,. Then the following conditions are
satisfied: i) g, is closed continuous and onto. ii) For every point z¢R,
97 (%) is compact. iii) 74,<7zB<zR. iv) ind A,=0. By Lemma 1
there exists a closed subset A of A, such that f=g,| A is irreducible.
A and f thus obtained satisfy all the conditions required and the
theorem is proved.

Lemma 2. Let f be a closed continuous mapping of a topological
space R onto a paracompact space S such that f-'(y) is compact for
every point y€8S. Then R s paracompact.



192 K. NagAMI [Vol. 87,

Cf. S. Hanai [2] or M. Henriksen-R. Isbell [3, Theorem 2.27.

Corollary. Let R be a non-empty paracompact Hausdorff® S,-
space.”’ Then there exist a paracompact Hausdorff S,-space A with
dim A=0 and a closed continuous mapping f of A onto R which
satisfy the following conditions.

(1) fYx) is compact for every point x of R.
(2) f is irreducible.

(8) dim A=0.

(4) zA<zR.

Proof. By Theorem 2 there exist a completely regular space A
with ind A=0 and a closed continuous mapping f of A onto R which
satisfy the conditions (1), (2), (4). Let R=£1Ri where R, 1=1,2,:--,
are non-empty closed subsets with the star-finite property. Then A,
=f"YR,), ©=1,2,---, is a closed subset of A with the star-finite
property by Theorem 1. Hence by Morita [6, Theorem 5.2] we get
dim A,=0. Moreover by Lemma 2 A is paracompact and hence A is
normal by J. Dieudonné [1]. Therefore by the sum theorem we get
dim A=0 and the corollary is proved.
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4) This condition of B can be replaced with a weaker condition, collectionwise
normality of R, since the following proposition is as can easily be seen valid: Let Fy,
4=1,2,---, be pointwise paracompact closed subsets of a collectionwise normal space;
then w F; is paracompact.

5) A space which is the sum of a countable number of closed subsets with the
star-finite property is called an S,~space. This notion is due to Morita.



