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59. Heisenberg’s Commutation Relation and the
Plancherel Theorem

By Masahiro NAKAMURA*® and Hisaharu UMEGAKI**’
(Comm. by K. KuNuGl, M.J.A., May 18, 1961)

1. Let G and X be a locally compact abelian group and its
character group, with the Haar measures dg and dy, respectively. For
a Borel subset S of G
(1) E(S)f(9)=C«9)f(9),
where Cy(g) is the characteristic function of S, defines a spectral
measure dE acting on L*G). It is easy to see that dE satisfies

(2) U(9)E(S)=E(gS)U(9),
for the regular representation U(g)(f(:-)—>f(g™':)) of G on L¥G).
Using dE, one can define

(3) V= [1@EQ),

for each character y¢X, where the integration ranges over G. It is
not hard to see that V(y) is a strongly continuous unitary representa-
tion of X, The pair U(g) and V (y) satisfies the so-called Heisenberg’s
commutation relation:

(4) U@)V@=xaVx)U(g).

The representations of a pair of unitary groups satisfying (4)
are discussed initially by M. H. Stone [4] and J. von Neumann [3]
for n-parameter cases. Their Theorem is generalized to locally com-
pact abelian separable groups by G. W. Mackey [2] and improved
away the separability by L. H. Loomis [1], which is stated as the
following way: Let U'(g) and V'(y) be strongly continuous unitary
representations of G and X on a Hilbert space, respectively, satisfy-
ing Hetisenberg’s commutation relation (4), thenm, according to the
pair U'(g) and V'(y) being irreducible or mot, that pair is unitarily
equivalent to the pair of the representations U(g) and V(x) or to
direct sum of their replicas. This theorem will be referred as Mackey-
Loomis’ Theorem.

The purpose of the present note is to show that Heisenberg’s
commutation relation (4), i.e. Mackey-Loomis’ Theorem, implies the
Plancherel Theorem. Since the proof of Mackey-Loomis does not
assume the duality theorem, our task may be observed with some
interests.
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2. Let dE’ be the spectral measure acting on L*X), which is
defined by the characteristic functions Cy of Borel sets S’ in X.
Denote

Ue)= [ 1@ dE Q).

Then U’(g) is a strongly continuous unitary representation of G. It
is easy to see that U’(g9) is a multiplication operator over L*X) by
a Borel measurable function F(y), and hence U'(gh)=U'(9)U’(k) and
the strong continuity imply F,(x)=x(g), i.e. the inner product (U’(g)

&)= f 1(@)e()n(x)dy for every & ne LA X). Denote the regular repre-

sentation of X by V’(x). Then the pair U’(g) and V’(y) satisfies the
commutation relation (4), because E'(S)V'(x)=V'(x)E'(x~'S’). Moreover
such a pair U'(g) and V'(y) is irreducible. Indeed, let a be a bounded
operator on L*X) commuting with all U’(g) and V(). Since the von
Neumann algebra A generated by U’'(g), geG, is maximally abelian, a
belongs to A and a multiplication operator by a Borel measurable
function a(y). While
a(x ™ )6 1) = V' (0)(@8)(x) =a(V' () (x) =a(x)é(x ~* x1)

implies that a(x*yx,)=a(y,) for all ¥ and a.e. y;€cX. Hence a is a
constant operator.

Since U’ and V’ satisfy (4), it is possible to apply Mackey-Loomis’
Theorem on U’ and V7, that is, there exists a unitary transforma-
tion T mapping L*G) onto L*X) such that

(5) U(g)T=TU(g) for every geG
and
(6) V@) T=TV(x) for every yeX.

Let F' be the transformation mapping L'(G) into the space of continu-
ous functions on X, defined by the following:

(Fo)x)= f 1@)e(9)dg for every peLY(G).

Then it will be proved the followings:

LEMMA 1. T(oxy)=(Te)F¥) for every ¢, Ve L(G)~LXG), where
o*x¥ denotes the convolution of ¢ and Y.

Proof. For a.e. yeX,

Toe 1)) =T| [ el y¥(a)dg [o0)=T[ [ Ulae(-y¥(odg [,

where the integration is L*-valued Bochner integral and T is bounded,
and hence the integration commutes with the operator T, therefore

1) For any bounded linear transformation L from L*G) into or onto L*X), U'(g)L
=LU(g) if and only if L{¢ x¢)=(L¢)F¢). Indeed, the ‘only if’ part is proved by the
same way of the proof of Lemma 1, and the ‘if’ part may be proved by using of the
approximate identity {e.} and by similar method of the proof of Lemma 2. We omit it.
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= [ TU@0¥@ Jis= [ @@ T ¥e)g

= [ XX TOWa)ig=(Te)w) [1@¥)dg
=(ToXE¥)D).

LEMMA 2. There exists a measurable function a(y) on X such
that (To)(x)=a(x)(Fe)(x), a.e. in X, for every ¢c L\G)~L¥G).

Proof. Let {e,} be an approximate identity in L'(G) generated
by a complete neighbourhood system {N,} of the unit of G. Then
e, belongs to L(G)~L¥G). For such e,, e,x¢p—>¢ in both L'- and L?*-
means, therefore, T(e,*x ¢)—>T¢ in L*mean. While by Lemma 1, T'(e, *
©)=(Te.)(F¢). Since {Fy; pc L\(G)~L*G)} is uniformly dense in C.(X),
where C.(X) is the space of all continuous functions on X vanishing
at infinite, lim, Te, exists (=a, say) and is clearly measurable. There-
fore (Te.)(Fo)(x)~>a()(Fe)x)=(Te)(x) a-e. in X.

LEMMA 3. The function a(y) equals to a nmon-zero constant a,,
say |a,|=1/c, a.e. in X.

Proof. By (6) and Lemma 2, for any ¢eL'(G)~L*G)

TV )=V () Te)x)=V'()a- Fo)(x:) =a(x ™ 2 )(Fe)(x ™ x1)-

While, (TV()e)(x)=a()- F(V)e)x)=a(u:)(Fe)(x * x;).- Hence a(x,)
=constant a.e. in X,

3. Summing up Lemmas 1,2 and 8, one has immediately

THE PLANCHEREL THEOREM. Denote the Fourier transformation
by G which is defined such that®

F: peLXG) — % f 1(9)¢(9)dg.
Then, for every ¢,¥eL¥@Q)

(") J1 @@ rdx= [19(0) g
and
(8) [ @@= [ fo¥is.

In this Theorem, the formula (8) follows immediately from (7).
Let 7! be the inverse of &, then &' is unitary transformation
from L% X) onto L*G), and we prove the following

THE FOURIER INVERSION FORMULA. (9! E)(g):l f (@) ECdy
[+

a.e. geG for every &e LY(X)~Li(X).
Proof. For every Yre LY(G)~L*G), the inner product

(F%, ¥)=(FFE, FY)=(§, F¥)= f EQEFP)(dy

2) For the function ¢ € L¥G) not belonging to L!(G), the transformation is defined
by the L*approximation.
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=—:‘3— [ [ Gf e(x)x(y)mdy]dx=—i— Gf [ xf 369740); dx]m)dg
(by Fubini Theorem)
=(L (e, ¥)-
(+f )

Therefore (F* é)(g)=% f 19)e(x)dy a.e. geG.

Finally, it will be remarked, that ¢=+ 2z when G is the real line,
that is,
(F))= &i? e “ip(t)dt.
Indeed, let C,(t) be the characteristic function of the interval [—1, 1],
then by Lemma 2 (T'C,)(2)=(1/¢)(FC,)(2)=(e"*—e *)/ic2=(2/c)(sin A/2).
Since T is unitary,

2= f “lCy(e) Fdt= f RICAD l2d=<%>2 f )

ie. c=4 2r.

sin A
A

2d__ 47[

=g

(4
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