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73. A Generalization of the Heinzy Inequality

By Tosio KATO
Department of Physics, University of Tokyo
(Comm. by K. KUNUG], M.J.A., June 12, 1961)

The object of the present note is to generalize the Heinz in-
equality for selfadjoint operators to a wider class of accretive opera-
tors.

A linear operator A in a Hilbert space is said to be accretive®
if Re (Au,w)>0 for all ueD[A] (D[A] is the domain of 4). If A is
closed and maximal accretive, then A is densely defined, and the
fractional powers A" are defined for 0<h<1 and are again closed
and maximal accretive.?

Our main result is given by

Theorem 1. Let A, B be closed, maximal accretive operators
in Hilbert spaces 9, ', respectively, and let T be a bounded linear
operator® from  to . If TO[A]JCD[B] and

(1) | BTu||<M]|| Au|l, wueD[A],
with a constant M, then we have TO[A*] D[ B*] and
(2) | B*Tu || <e™*"M"N'""|| A*u||, wueD[A"],

where N=||T||, 0<h<1 and c is an absolute constant. We can take
¢=0 if A, B are selfadjoint and monnegative. In gemeral we can
take c=r%2, but we do mot know whether this is the optimal value.

Remark. The value of ¢ can be improved if A, B are themselves
fractional powers of accretive operators. Suppose that there are
closed, maximal accretive operators A,, B, in 9, §’, respectively,
such that A=Aj;, B=B; for some s,t, 0<s8<1,0<t<1. Then we can
set c=n*(s®+1¢*)/4. (The proof is not essentially different from the
proof of Theorem 1 given below.) If, for example, A is nonnegative
selfadjoint, we can make s—>0 and set c=r%?/4.

Corollary. If A, B are closed, maximal accretive operators in
9 such that D[AJCID[B] and ||Bu||<||Au|| for ueD[A], then
D[A*]CD[B*] and || B™u||<e™ || A*u|| for ueD[A"], 0<h<].

Theorem 1 is equivalent to

Theorem 2. Let A4, B be as in Theorem 1, and let Q@ be a densely

1) Then —A is said to be dissipative. For the term ‘‘accretive’’, see K. O.
Friedrichs: Symmetric positive linear differential equations, Comm. Pure Appl. Math.,
11, 333-418 (1958).

2) See T. Kato: Fractional powers of dissipative operators, J. Math. Soc. Japan,
13 (1961), in press. This paper will be quoted as (F) in the following.

3) A bounded linear operator is assumed to be defined everywhere in the domain
space, unless otherwise stated explicitly.
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defined, closed linear operator from £ to ' such that D[A]C D[Q],
D[B]CD[QR*] and

(3) lQu|I<|| Au|l, weD[AL; ||Q*|I<||Bvl|l, veD[BI].

Then we have for 0<h<1

(4) |[(Qu,v)|<e™ ™| AM]| || B ™]|, ueD[A], veD[B].

In the selfadjoint case (¢=0), these results are known as the
Heinz inequality. Recently, Krasnosel’skii and Sobolevskii® considered
the generalization of the Heinz inequality to non-selfadjoint operators
in Hilbert and Banach spaces. But their results are different from
(2) in that the A" on the right is replaced by A* with a k>h (with
the numerical factor depending on A and k) and similarly for (4).

We first prove Theorem 1 in the following weakened form.

Theorem 3. Let A, B be bounded accretive operators in 9, 9,
respectively, and let T be a bounded linear operator from 9 to 9.
Then
(5) || B*TA"||[<e**» || T||**|| BTA(]", 0<Rk<1.

To prove this, we need a lemma which generalizes a previous
result of the author.

Lemma. Let A be a closed, maximal accretive operator in 9.
Then there 1is, for each a with 0<a<1/2, a bounded linear operator
U, in © such that

(6) A*=UA", || U.||<c,

where ¢, 18 a constant depending only on a and

(7) lim sup (c,—1)/a®*=c<n%/2.
a>0

Proof of Lemma. The existence of a U, with the property (6)
follows from the result || A*u ||<c,. || A"« ||, ue D[A*]=D[A**], which
is proved in (F) (see Theorem 1.1 of (F)). However, the constant
c.=tan [(14+2a)/4z] deduced in (F) does not satisfy (7). Let us now
improve this ¢,. We first assume that A is bounded and Re (Au, u)>a
|| w )%, >0, and note, following the notation of (F), that A*=H,+1K,,
A*H;'=1+1K,H;*. Hence
(8) NAHw|P=||u|+|| K.H'w |P+i(K.H — H K )w, u).
Here we have
(9) || K.H'—H;'K, || <2 tan® (ra/2), 0<a<1/2.

To see this, we consider X,=K,H,;'— H;'K, for complex «. We know

4) E. Heinz: Beitriige zur Storungstheorie der Spektralzerlegung, Math. Ann.,
123, 415-438 (1951); T. Kato: Notes on some inequalities for linear operators, Math.
Ann., 125, 208-212 (1952); J. Dixmier: Sur une inégalité de E. Heinz, Math. Ann., 126,
7578 (1953); E. Heinz: On an inequality for linear operators in a Hilbert space, Report
of an International Conference on Operator Theory and Group Representations, Arden
House, Harriman, N. Y., 27-29 (1955); H. O. Cordes: A matrix inequality, Proc. Amer.
Math. Soe., 11, 206-210 (1960).

5) M. A. Krasnosel’skii and P. E. Sobolevskii: Fractional powers of operators
acting in Banach spaces (in Russian), Doklady Acad. Nauk, 129, 499-502 (1959).
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by (F) that X, is holomorphic and || K, H;!||<1, || H;'K., ||=|| (KzHz)*||
<1for |Rea|<1/2. Hence || X,||<2 for | Rea|<1/2. But it is easily
seen that X, has a double zero at a=0 (note that K,=0, H,=1).
Therefore X./tan? (za/2) is holomorphic for | Re « | <1/2, and (9) follows
by the maximum principle as in (F).
Thus we have from (8)
[(1—2tan® (za/2)](|| v ||*+]| K.H'u [[)<|| A“HZ'u [|*
<[1+2tan® (za/2)](|| w |+ K.HZ'u [[?).
Since the same inequalities hold for A replaced by A*, we have for
all ve9
(10) || A*v||<[1+2 tan® (za/2)]**[1—2 tan® (za/2)] % || A0 ||,
at least for 0<a<1/3. As in (F), (10) can then be extended to the
general case by a limiting procedure. (10) implies the existence of a U,
with the property (6), with ¢,=[1+2 tan? (za/2)]¥*[1—2 tan*(ra/2)] '
for 0<a<1/3 and c¢,=tan [(142a)/47] for 1/3<a<1/2. This c, satis-
fies (7) with ¢=x=?%2.
Proof of Theorem 8. Let d>0, h—d>0, h+d<1. We have
|| BPTA" |?<|| A**T*B**B"TA*" ||
<|| A**-eT* B*»-¢ B*¢BrT A A*? ||,
where we have used the facts that || R[|*’=|| R*R|| in general and
|| RS||<|| SR || if RS is symmetric.® If d<1/2, we have B**=V_ B*
with || V;||<e; by Lemma. Similarly, we have A= W,A** or A**
=A*W} with || W, ||<c,. Hence (11) gives
” BhTAh. ”23” A*h-dT*B*h—d ” ” Vch&dTAh-HiW: “
ch ” Bh-dTAh-d ” ” Bh+dTAh+d “.
Setting f(h)=log || B*TA" ||, we have 2f(h)—f(h—d)—f(h+d)<2log ¢,.
Dividing both sides by d* and letting d—>0, we obtain by (7)
lim sup d~*[2(h)—f (h—d)—f(h+d)]<2c.

It follows that f(k)<(1—h)f(+0)+hf(1)+ch(1—h), which is equiva-
lent to (5).

Proof of Theorem 1. i) If A, B and A™! are bounded, (1) implies
that || BTA'||<M. Hence we have, by Theorem 3, ||B*TA™*||
<e*t"WM N'-* which implies (2). ii) If A, B are bounded, (1) implies
that || BTu||<M|| (A+¢e)u || for ¢>0. Since (A+¢)™! is bounded, by
i) we obtain (2) with A" replaced by (A+¢)*. Then we get (2) by
letting ¢—->0, for (A-¢)*—~>A" strongly (see (F)). iii) Assume that A4,
B are not necessarily bounded but A-!, B! are bounded. Then it is
easily seen” that (1) is equivalent to || A* 'T*v ||<M || B*'v|| for
all ve®’. Thus we have || A* *T*y||<e™ " PM"N*-*|| B* || by ii),

(11)

6) RS and SR have the same spectral radius . The symmetry of RS implies
|| RS ||=r, whereas || SR||=». Cf. the paper by Cordes cited in 4).
7) Cf. the paper by Kato cited in 4).
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and this is again equivalent to (2). iv) In the general case, (1) im-

plies that

1(B+e)Tu ||[<M|| Au||+&N || u || <(M>+EN?)2(|| Au |P+€ || w |[5)
<(M*4-ENHVE || (A+e)u || for &>0.

Thus by iii) we have (2) with A, B, M replaced by A-+e B¢

(M*+42N*)"* respectively. Then (2) follows by letting é—0; note that

D[(A+e)*]=D[A"] and (A+e)'u—A"u for ue D[A"], see (F).

Proof of Theorem 2. The second inequality of (8) implies that
there is a bounded linear operator T* from £’ to © such that T*B
CQ*, || T*||<1. Then it follows easily that QCCB*T. Thus the first
inequality of (8) implies that || B*T« ||<|| A || and we see by Theorem
1 that || B*"Tu||<e* ™| A*u||. Hence |(Qu,v)|=|(B*Tu,v)|
=|(B*"Tu, B' ™) |<e™* ™ || A*u|| || B*"™|l. We can also deduce Theo-
rem 1 from Theorem 2, but the proof may be omitted.

As an application of Theorem 1 (Corollary), let us prove

Theorem 4. Let A be a closed, maximal accretive operator in
9. Then the selfadjoint operators (A*A)* and (AA*)* are compa-
rable for 0<h<1/4 (that is, D[(A*A)"]=D[(4A4*)*] and the values
[|(A*A)u ||/ || (AA*)u || are bounded by positive constants from above
and from below).

Proof. It is well known that A and (4*4)“? are comparable.
Hence A* and (A*A)** are comparable for 0<i<1 by Corollary to
Theorem 1. Similarly A** and (AA*)** are comparable. But A* and
A*"* are comparable for 0<h<1/2 by Lemma (cf. also (F)). Hence
follows Theorem 4.

Example. Let $=L%0, ) and A=d/dx with the boundary con-
dition %#(0)=0. A is maximal accretive and A*=—d/dx with no
boundary condition. Thus A* A= —d?*/dx* with the Dirichlet boundary
condition u(0)=0, whereas AA*=—d?/da* with the Neumann boundary
condition #'(0)=0. Obviously these two selfadjoint operators have
different domains, but Theorem 4 shows that their A-th powers are
comparable if 0<h<1/4. A similar result can be proved for second
order elliptic differential operators in = variables, although the proof
given here is not applicable.



