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73. A Generalization o[ the Heinz Inequality

By Tosio KATO
Department of Physics, University of Tokyo

(Comm. by K. KUNU(I, M.J..., June 12, 1961)

The object of the present note is to generalize the Heinz in-
equality for selfadjoint operators to a wider class of accretive opera-
tors.

A linear operator A in a Hilbert space is said to be accretive1

if Re (Au, u)>_O for all ue.A] (.[A] is the domain of A). If A is
closed and maximal accretive, then A is densely defined, and the
fractional powers A are defined for 0_<h_<l and are again closed
and maximal accretive.2,

Our main result is given by
Theorem 1. Let A, B be closed, maximal accretive operators

in Hilbert spaces , ’, respectively, and let T be a bounded linear
operator3) from to ’. 1.f T[A]c[B] and
( 1 ) II BTu II<MII Au II,
with a constant M, then we have T3[A])[B] and

where N=II TII, O<h<l and c is an absolute constant. We can take
c--O if A, B are selfadjoint and nonnegative. In general we can
take c--/2, but we do not know whether this is the optimal value.

Remark. The value of c can be improved if A, B are themselves
fractional powers of accretive operators. Suppose that there are
closed, maximal accretive operators A, B in 29, Sp’, respectively,
such that A=AI, B-- B; for some s, t, 0< s_< 1, 0< t_< 1. Then we can
set c=r(s+t)/4. (The proof is not essentially different from the
proof of Theorem 1 given below.) If, for example, A is nonnegative
selfadjoint, we can make s-->0 and set c--=t/4.

Corollary. If A, B are closed, maximal accretive operators in
such that .[A] Z)[B] and [I Bu 1[_1] Au I1 for u[A], then

,[A’J C:[B’q and ]1Bau ]1<-- e"‘-n, II Aau [I for ue[A], O_<h_<l.
Theorem 1 is equivalent to
Theorem 2. Let A, B be as in Theorem 1, and let Q be a densely

1) Then --A is said to be dissipative. For the term "accretive", see K. O.
Friedrichs: Symmetric positive linear differential equations, Comm. Pure Appl. Math.,
11, 333-418 (1958).

2) See T. Kato: Fractional powers of dissipative operators, J. Math. Soc. Japan,
13 (1961), in press. This paper will be quoted as (F) in the following.

3) A bounded linear operator is assumed to be defined everywhere in the domain
space, unless otherwise stated explicitly.
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defined, closed linear operator from to ’ such that
Q,[B][ ] and

Then we have for 0 hg 1
( a ) (Qu, v)e(-a, ]] Au ] ] B’-v , ue[A], ve[SJ.

In the selfadjoint case (c=O), these results are known as the
Heinz inequality?’ Recently, Krasnosel’skii and Sobolevskii considered
the generalization of the Heinz inequality to non-selfadjoint orators
in Hilbert and Banach spaces. But their results are different from
(2) in that the A on the right is replaced by A* with a kh (with
the numerical factor dending on h and k) and similarly for (4).

We first prove Theorem 1 in the following weakened form.
Theorem . Let A, B be bounded cretive operators in , ’,

respectively, and let T be a bounded linear operator from to ’.
Then
(5) ] BTA ]] ge’’-’ T[- [ BTA ]], 0hl.

To prove this, we need a lemma which generalizes a previous
result of the author.

Lemma. Let A be a closed, maximal cretive operator in
Then there is, for each a with 0<a<l/2, a bounded linear operator
U. in such that
( 6 ) A*’-- U.A’, II u. II
where c. is a constant depending only on a and
7 ) lim sup (c.--1)/a=cg/2.

Proof of Lemma. The existence of a U. with the property (6)
follows from the result A*’u [[ gc. [[ A’u , u[A’J--[A*’], which
is proved in (F) (see Theorem 1.1 of (F)). However, the constant
c.=tan [(1+2a)/4u] deduced in (F) does not satisfy (7). Let us now
improve this c.. We first assume that A is bounded and Re (Au, u)2 a
li u , a>0, and note, following the notation of (F), that
A’H; 1+iK.H:. Hence

Here we have
( 9 ) II K.H;--H;K. ]]g2 tan (a/2), 0gag 1/2.
To see this, we consider X.=K.H;--H;K. for complex a. We know

4) E. Heinz: Beitrige zur StSrungstheorie der Spektralzerlegung, Math. Ann.,
123, 415-438 (1951); T. Kato: Notes on some inequalities for linear operators, Math.
Ann., 125, 208-212 (1952); J. Dixmier: Sur une in6galit de E. Heinz, Math. Ann., 126,
75-78 (1953); E. Heinz: On an inequality for linear operators in a Hilbert space, Report
of an International Conference on Operator Theory and Group Representations, Arden
House, Harriman, N. Y., 27-29 (1955); H. O. Cordes: A matrix inequality, Proc. Amer.
Math. Sot., 11, 206-210 (1960).

5) M. A. Krasnosel’skii and P. E. Sobolevskii: Fractional powers of operators
acting in Banach spaces (in Russian), Doklady Acad. Nauk, 129, 499-502 (1959).
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by (F) that X is holomorphic and
_< 1 for Re a -< 1/2. Hence II X, I1-< 2 for Re a I--< 1/2. But it is easily
seen that X. has a double zero at a--0 (note that K0--0, H0--1).
Therefore X/tan (=a/2) is holomorphic for Rea1/2, and (9) follows
by the maximum principle as in (F).

Thus we have from (8)
[1--2 tan (a/2)]( u

1+2 tan (a/2)]( u +[[ K.g:u [).
Since the same inequalities hold for A replaced by A*, we have for
all
(10) [ A*v ] [1 +2 tan (a/2)]’/2[1--2 tan (ra/2)] -’/ Av ,
at least for 0al/3. As in (F), (10) can then be extended to the
general case by a limiting procedure. (10) implies the existence of a U
with the property (6), with c--[1+2 tan (a/2)]’/[1--2 tan2(a/2)] -/2

for 0al/3 and c=tan [(1+2a)/4] for 1/3<a<1/2. This c, satis-
fies (7) with

Proof of Theorem 3. Let d> O, h--d 0, h+d1. We have
BTA

(11)

where we have used the facts that ] R =[ R*R [ in general and
RS[ SR if RS is symmetric2’ If d<1/2, we have B*-- VB

with ]] V [c by Lemma. Similarly, we have A- WA* or A*
=AW with W c. Hence (11) gives

BTA
 1B - TA II II B + TA II.

Setting f(h)= log }} B’:TA , we have 2f(h)--f(h--d)--f(hTd)g2 log c.
Dividing both sides by d and letting do0, we obtain by (7)

lim sup d-:[2f(h)--f(h--d)--f(h+d)] 2c.
d+0

It follows that f(h)g(1--h)f(TO)Thf(1)+ch(1--h), which is equiva-
lent to (5).

Proof of Theorem 1. i) If A, B and A- are bounded, (1) implies
that [I BTA-ge<-’M"N-, which implies (2). ii) If A, B are bounded, (1) implies
that ]} BTu]]M[[ (A+)u II for Since (ATe)- is unded, by
i) we obtain (2) with A replaced by (A+@. Then we get (2) by
letting +0, for (AW@+A strongly (see (F)). iii) Assume that A,
B are not necessarily bounded but A-, B- are bounded. Then it is
easily seen) that (1) is equivalent to II A*-T*v [[MII B*-:v I! for
all v+O’. Thus we have [[ A*-T*v [Ige<-)MN- [ B*-v by ii),

6) RS and SR have the same spectral radius r. The symmetry of RS implies
il RS !] =r, whereas [i SR [] >-r. Cf. the paper by Cordes cited in 4).

7) Cf. the paper by Kato cited in 4).
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and this is again equivalent to (2). iv) In the general case, (1) im-
plies that
II (B+2)Tu II<--M]] Au ]1+$2NII u I](M’--$2N2)/2([[ Au

<--(M2-t-e2N2)/2 II (AWe)u II for >0.
Thus by iii) we have (2) with A, B, M replaced by A+e, B-2,
(M2--$2N2)/2 respectively. Then (2) follows by letting e-->0; note that
[(A+e)] [A] and (A+e)u->Au for u[A], see (F).

Proof of Theorem 2. The second inequality of (3) implies that
there is a bounded linear operator T* from Yp’ to ) such that T*B
Q*, II T* I1-< 1. Then it follows easily that QB* T. Thus the first
inequality of (3) implies that II B*Tu ]]--<]1Au II and we see by Theorem
1 that il B*aTu I1<-- e(-) [[ Au II. Hence

I(B*Tu, B-v) l<-- e(-) I] Au II Ii B-% II. We can also deduce Theo-
rem 1 from Theorem 2, but the proof may be omitted.

As an application of Theorem 1 (Corollary), let us prove
Theorem 4. Let A be a closed, maximal accretive operator in. Then the selfadjoint operators (A’A) and (AA*) are compa-

rable for 0_h<1/4 (that is, [(A*A)J--[(AA*)] and the values

II (A’A)u Ilflll (AA*)u Ii are bounded by positive constants from above
and from below).

Proof. It is well known that A and (A’A)/ are comparable.
Hence A and (A’A)/ are comparable for 0_h_l by Corollary to
Theorem 1. Similarly A* and (AA*)/ are comparable. But A and
A* are comparable for 0_<h<:1/2 by Lemma (cf. also (F)). Hence
follows Theorem 4.

Example. Let $p=L(0, o) and A=d/dx with the boundary con-
dition u(0)-0. A is maximal accretive and A*----d/dx with no
boundary condition. Thus A’A=--d/dx with the Dirichlet boundary
condition u(0)=0, whereas AA*---d/dx with the Neumann boundary
condition u’(0)=0. Obviously these two selfadjoint operators have
different domains, but Theorem 4 shows that their h-th powers are
comparable if 0_<h<1/4. A similar result can be proved for second
order elliptic differential operators in n variables, although the proof
given here is not applicable.


