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K. Nagami has recently obtained the following theorem: a com-
pletely regular T,-space X is compact if and only if the projection
from the product space XXY onto Y is closed for any completely
regular Ti-space Y.

In this note, with the exception of the complete regularity and
the separation axiom (7) of X, we shall prove an analogous theorem.

Theorem. Let X be a topological space and m an infinite car-
dinal number. Then X is m-compact if and only if the projection
from the product space XXY onto Y is closed for any paracompact
Hausdorff space Y such that each point of Y has a meighborhood
basis of power <m.

Proof. As the “only if” part has been shown in our previous
note,” we need only prove the “if” part. If we suppose that X is
not m-compact, then there exists a colleetion of closed subsets
={F,| A€ 4} with the finite intersection property such that
(1) |4|<m where | 41| denotes the power of A.

(2) ~ F,=¢.

Moreover, by adding to & all the intersections of finitely many
sets of ¥, we can assume that § satisfies the following condition (3),
because | 4| does not exceed m.

(8) F,~F,e® for any two sets F, F, of 3.

We define the partial order in such a way that A=p if and only
if F;CF, Then 4 is a directed set by the condition (8).

Let Y denote the set of different elements {y,| i€ 4}—¥y., where
o2 for every 2¢4. We next define the topology of Y such that
(4) the neighborhood basis of each point ¥, is the single point
set {y.},

(5) the neighborhood basis of the point y. is the family of sets
Uye)={Yu | =2}~ Ye

Then, since A4 is a directed set, Y is a topological space. It is
evident that each point of Y has a neighborhood basis of power
=<m. We next prove that Y is a Hausdorff space. Since {y,}~{¥.}=¢

1) K. Nagami communicated to me this interesting theorem in his kind letter of
August 8, 1961.
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for 2%y, it is sufficient to show that there exist disjoint neighbor-
hoods of two points ¥, and ¥,.. From the condition (2), we can see
that there exists a set F), such that F,22F,. Then {y,}~U,(¥-)=9,
hence Y is a Hausdorfl space. It is easy to see that, for any open
covering & of Y, we can find a locally finite open refinement of &
such that {U,¥); {¥.}|¥.€¢ Y—U,(¥.)} where 2 is a suitable suffix.
Therefore Y is para-compact.

Let 8={F,X¥y,| €4}, then 8 is a family of closed subsets of the
product space XXY. We shall next prove that L is locally finite.
Let U(x) x{y.} be a neighborhood of the point (z,%,), then U(z)X{y,}
intersects only one element F; Xy, of & Let 2 be any point of X,
then there exists a set F, such that x¢F, since ;:AF1=¢. Then

(X—F,)XU,(y.) is a neighborhood of the point (x,¥.). Since 1<p
follows from ¥,e¢U,(¥.), we have F,CF,. Then F,~(X—F,)=4¢.
Therefore no element of € intersects the neighborhood (X— F ;) ~ U(¥..).
By the above reasoning, we can see that L is locally finite. There-
fore A:lv (F, Xy, is a closed subset of XX Y. It is evident that

€A
the projection p from XX Y onto Y transforms the set A onto the

set C=- {y,|1e4}. On the other hand, since y. is a cluster point
2¢€4

of C, C is not closed. Hence p is not closed. This completes the
proof.

As the immediate consequences of the above theorem, we get
the following corollaries.

Corollary 1. A topological space X is compact if and only if
the projection from the product space XXY onto Y is closed for any
paracompact Hausdorff space Y.

Corollary 2. A topological space X is countably compact if and
only if the projection from the product space XXY onto Y is closed
for any paracompact Hausdorff space Y satisfying the first counta-
bility axiom.

Remark. From the proof of the above theorem, we can see that
“for any paracompact Hausdorff space Y” may be replaced by “for
any non-diserete paracompact Hausdorff space Y ”. Therefore the
proposition replaced by “for any non-discrete paracompact Hausdorft
space Y’ in Corollary 2 is stronger than Corollary 1.7 in our previous
note.”

3) Cf. the note cited in 2).



