58. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces

By Sakuji INOUE

Faculty of Education, Kumamoto University Comm. by K. KUNUGI, M.J.A., June 12, 1962)

Let § be the complex abstract Hilbert space which is complete, separable, and infinite dimensional; let N be a bounded normal operator in §; let $\{\lambda_{\nu}\}_{\nu=1,2,3,\dots}$ be its point spectrum (inclusive of the multiplicity of each eigenvalue of N); let $\{\varphi_{\nu}\}_{\nu=1,2,3,\dots}$ be an orthonormal set determining the subspace \mathfrak{M} determined by all the eigenelements of N, such that φ_{ν} is a normalized eigenelement of N corresponding to the eigenvalue λ_{ν} ; let $\{\psi_{\mu}\}_{\mu=1,2,3,\dots}$ be an orthonormal set determining the orthogonal complement \mathfrak{N} of \mathfrak{M} ; and let L_{f} be the continuous linear functional associated with an arbitrary element $f \in \mathfrak{H}$. Then $||N\psi_{\mu}||^{2}$, $\mu=1,2,3,\cdots$, assume the same value, which will be denoted by σ ; and if we choose arbitrarily a complex constant c with absolute value $\sqrt{\sigma}$ and put $\Psi_{\mu} = \sum_{j} u_{\mu j} \psi_{j}$, where $u_{\mu j} = (N\psi_{\mu}, \psi_{j})/c$ and \sum_{j} denotes the sum for all $\psi_{j} \in \{\psi_{\mu}\}$, then the equality

$$N = \sum_{\nu} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}} + c \sum_{\mu} \Psi_{\mu} \otimes L_{\psi_{\mu}}$$

holds on the domain \mathfrak{H} of N, and moreover the infinite matrix (u_{ij}) associated with all the elements of $\{\psi_{\mu}\}$ is a unitary matrix with $|u_{jj}| \neq 1, j=1,2,3,\cdots$, and $||N|| = \max(\sup |\lambda_{\mu}|, |c|)$ [2].

Lemma. Let $M = \max(\sup_{\nu} |\lambda_{\nu}|, |c|)$; let Γ be a rectifiable closed Jordan curve containing the closed domain $D\{\lambda : |\lambda| \leq M\}$ inside itself; let f_{α} and g_{α} , $\alpha = 1, 2, 3, \dots, m$, be arbitrarily given elements in \mathfrak{H} ; let $\varphi_{\alpha}(\lambda) = ((\lambda I - N)^{-\alpha} f_{\alpha}, g_{\alpha})$ and $\Phi(\lambda) = \sum_{\alpha=1}^{m} \varphi_{\alpha}(\lambda)$; and let k be an arbitrary positive integer. Then

$$F_{k}(z) \equiv \frac{1}{2\pi i} \int_{\Gamma} \Phi(\lambda) (\lambda - z)^{-k} d\lambda = \begin{cases} 0 \text{ (for every point } z \text{ inside } \Gamma) \\ -\Phi^{(k-1)}(z)/(k-1)! \text{ (for every point } z \text{ outside } \Gamma), \end{cases}$$

where the curvilinear integration is taken in the counterclockwise direction and 0! and $\Phi^{(0)}(z)$ denote 1 and $\Phi(z)$ respectively.

Proof. Let $\{K(\zeta)\}$ and $\Delta(N)$ denote the complex spectral family and the continuous spectrum of N respectively. By making use of $\{K(\zeta)\}$ we can first verify without difficulty that $(\lambda I - N)^{-\alpha}$ is a bounded normal operator for any λ belonging to the resolvent set of N. Consequently the functions $\varphi_{\alpha}(\lambda)$ and $\Phi(\lambda)$ both are significant for every $\lambda \in \Gamma$. In addition, it is evident that $\Phi(\lambda)$ is not only continuous but S. INOUE

also regular on Γ and that, though $\Phi(\lambda)$ has the set $\Delta(N) \bigcup \{\lambda_{\nu}\}$ of non-regular points inside Γ , the function $F_1(z)$ defined in the statement of the present lemma is regular inside and outside Γ by the continuity of $\Phi(\lambda)$ on Γ , as is well known in the function theory.

Let $f_{\alpha} = \sum_{\nu} a_{\nu}^{(\alpha)} \varphi_{\nu} + x_{\alpha}$, where $x_{\alpha} = \sum_{\mu} (f_{\alpha}, \psi_{\mu}) \psi_{\mu}$; let $g_{\alpha} = \sum_{\nu} b_{\nu}^{(\alpha)} \varphi_{\nu} + y_{\alpha}$, where $y_{\alpha} = \sum_{\mu} (g_{\alpha}, \psi_{\mu}) \psi_{\mu}$; let $P_{\alpha}(\lambda) = \sum_{\nu} a_{\nu}^{(\alpha)} \overline{b}_{\nu}^{(\alpha)} (\lambda - \lambda_{\nu})^{-\alpha}$; and let $Q_{\alpha}(\lambda)$ $= \int_{d(N)} (\lambda - \zeta)^{-\alpha} d(K(\zeta) x_{\alpha}, y_{\alpha})$. Then, by means of the spectral integral expression of $\varphi_{\alpha}(\lambda)$ we obtain $\varphi_{\alpha}(\lambda) = P_{\alpha}(\lambda) + Q_{\alpha}(\lambda)$ and hence $\Phi(\lambda) = \sum_{\alpha=1}^{m} P_{\alpha}(\lambda)$ $+ \sum_{\alpha=1}^{m} Q_{\alpha}(\lambda)$. Moreover, by applying the inequalities $\sum_{\nu} |a_{\nu}^{(\alpha)} \overline{b}_{\nu}^{(\alpha)}|^{2}$ $\leq \{\sum_{\nu} |a_{\nu}^{(\alpha)}|^{2}\}^{\frac{1}{2}} \{\sum_{\nu} |\overline{b}_{\nu}^{(\alpha)}|^{2}\}^{\frac{1}{2}} < \infty$ we can readily show that the series $P_{\alpha}(\lambda)$ is absolutely and uniformly convergent on Γ . Hence it is found with the help of the Cauchy theorem and the calculus of residues that

$$\begin{split} \int_{\Gamma} P_{\alpha}(\lambda)(\lambda-z)^{-1}d\lambda &= \sum_{\nu} \int_{\Gamma} \alpha_{\nu}^{(\alpha)} \overline{b}_{\nu}^{(\alpha)}(z-\lambda_{\nu})^{-1} \{(\lambda-z)^{-1}(\lambda-\lambda_{\nu})^{-(\alpha-1)} - (\lambda-\lambda_{\nu})^{-\alpha}\} d\lambda \\ &= \sum_{\nu} \int_{\Gamma} \alpha_{\nu}^{(\alpha)} \overline{b}_{\nu}^{(\alpha)}(z-\lambda_{\nu})^{-1}(\lambda-z)^{-1}(\lambda-\lambda_{\nu})^{-(\alpha-1)} d\lambda \\ &= \sum_{\nu} \int_{\Gamma} \alpha_{\nu}^{(\alpha)} \overline{b}_{\nu}^{(\alpha)}(z-\lambda_{\nu})^{-2} \{(\lambda-z)^{-1}(\lambda-\lambda_{\nu})^{-(\alpha-2)} - (\lambda-\lambda_{\nu})^{-(\alpha-1)}\} d\lambda \\ &:= \sum_{\nu} \int_{\Gamma} \alpha_{\nu}^{(\alpha)} \overline{b}_{\nu}^{(\alpha)}(z-\lambda_{\nu})^{-\alpha} \{(\lambda-z)^{-1} - (\lambda-\lambda_{\nu})^{-1}\} d\lambda \\ &= \begin{cases} 0 \quad \text{(for every point } z \text{ inside } \Gamma \\ -2\pi i P_{\alpha}(z) \quad \text{(for every point } z \text{ outside } \Gamma). \end{cases} \end{split}$$

Moreover it is clear that the same result as above holds for $\alpha = 1$. In consequence,

$$\sum_{\alpha=1}^{m} \int_{\Gamma} P_{\alpha}(\lambda) (\lambda-z)^{-1} d\lambda = \begin{cases} 0 & \text{(for every point } z \text{ inside } \Gamma) \\ -2\pi i \sum_{\alpha=1}^{m} P_{\alpha}(z) & \text{(for every point } z \text{ outside } \Gamma). \end{cases}$$

On the other hand, we have

$$\int_{\Gamma} Q_{\alpha}(\lambda)(\lambda-z)^{-1}d\lambda = \int_{\Gamma} (\lambda-z)^{-1} \int_{\mathcal{A}(N)} (\lambda-\zeta)^{-\alpha} d(K(\zeta)x_{\alpha}, y_{\alpha}) d\lambda$$
$$= \int_{\mathcal{A}(N)} \int_{\Gamma} (\lambda-z)^{-1} (\lambda-\zeta)^{-\alpha} d\lambda d(K(\zeta)x_{\alpha}, y_{\alpha})$$

by considering the limit of a sequence of approximation sums of the curvilinear integral along Γ , while

$$\begin{split} \int_{\Gamma} (\lambda - z)^{-1} (\lambda - \zeta)^{-\alpha} d\lambda &= \int_{\Gamma} (z - \zeta)^{-\alpha} \{ (\lambda - z)^{-1} - (\lambda - \zeta)^{-1} \} d\lambda \\ &= \begin{cases} 0 \quad (\text{for every point } z \text{ inside } \Gamma) \\ -2\pi i (z - \zeta)^{-\alpha} \quad (\text{for every point } z \text{ outside } \Gamma), \end{cases} \end{split}$$

as can be shown by reasoning exactly like that applied to evaluate the integral $\int_{r} P_{\alpha}(\lambda)(\lambda-z)^{-1}d\lambda$. These results permit us to assert that

$$\sum_{\alpha=1}^{m} \int_{\Gamma} Q_{\alpha}(\lambda) (\lambda-z)^{-1} d\lambda = \begin{cases} 0 \quad (\text{for every point } z \text{ inside } \Gamma) \\ -2\pi i \sum_{\alpha=1}^{m} Q_{\alpha}(z) \quad (\text{for every point } z \text{ outside } \Gamma). \end{cases}$$

In consequence,

$$\frac{1}{2\pi i} \int_{\Gamma} \Phi(\lambda) (\lambda - z)^{-1} d\lambda = \begin{cases} 0 & \text{(for every point } z \text{ inside } \Gamma) \\ -\Phi(z) & \text{(for every point } z \text{ outside } \Gamma). \end{cases}$$

Since, in addition, the function $F_1(z)$ defined by the left-hand member of the final relation is regular inside and outside Γ ,

$$\begin{split} F_1^{(k-1)}(z) &= \frac{(k-1)!}{2\pi i} \int_{\Gamma} \varPhi(\lambda) (\lambda - z)^{-k} d\lambda \quad (z \in \Gamma) \\ &= \begin{cases} 0 \quad (\text{for every point } z \text{ inside } \Gamma) \\ -\varPhi^{(k-1)}(z) \quad (\text{for every point } z \text{ outside } \Gamma). \end{cases} \end{split}$$

Thus we obtain the required relation

 $F_k(z) = \begin{cases} 0 & (\text{for every point } z \text{ inside } \Gamma) \\ -\Phi^{(k-1)}(z)/(k-1)! & (\text{for every point } z \text{ outside } \Gamma), \end{cases}$

as we wished to prove.

Remark. Let $\{\lambda_{\nu}\}$ be an arbitrarily prescribed, countably infinite, and bounded set of points in the complex plane. Since, then, there exist bounded normal operators such that each of them has the set $\{\lambda_{\nu}\}$ as the point spectrum [1], it is seen that the lemma established above remains true even if the set of all the accumulation points of $\{\lambda_{\nu}\}$ is uncountable.

Definition. In the present lemma, $\sum_{\alpha=1}^{m} \alpha_{\nu}^{(\alpha)} \overline{b}_{\nu}^{(\alpha)} (\lambda - \lambda_{\nu})^{-\alpha}$ is called the principal part of $\Phi(\lambda)$ at λ_{ν} , and $\sum_{\alpha=1}^{m} P_{\alpha}(\lambda)$ and $\sum_{\alpha=1}^{m} Q_{\alpha}(\lambda)$ are called the first and second principal parts of $\Phi(\lambda)$ respectively. If, for a function $S(\lambda)$ defined on the domain $G\{\lambda:|\lambda|<\infty\}$, the function $R(\lambda)=S(\lambda)$ $-\{P(\lambda)+Q(\lambda)\}$, where $P(\lambda)$ and $Q(\lambda)$ are the first and second principal parts of $S(\lambda)$ respectively, is regular on G, then $R(\lambda)$ is called the ordinary part of $S(\lambda)$, including the case $Q(\lambda)\equiv 0$.

We shall discuss about such functions as consist of these three parts.

Theorem 1. Let $\{\lambda_{\nu}\}_{\nu=1,2,3,\ldots}$ be an arbitrarily prescribed, countably infinite, and bounded set of mutually distinct points in the complex plane such that the set of all the accumulation points of it is countable or uncountable; let $S(\lambda)$ be a function regular on the domain $D\{\lambda:|\lambda|<\infty\}$ with the exception of $\{\lambda_{\nu}\}$ and its accumulation points such that, in the sense of the functional analysis as stated in the earlier discussion, the principal part of $S(\lambda)$ at any λ_{ν} is expressible S. INOUE

in the form $\sum_{\alpha=1}^{m_{\nu}} c_{\alpha}^{(\nu)} (\lambda - \lambda_{\nu})^{-\alpha}$, $(m_{\nu} < \infty)$, where $\sum_{\nu} |c_{\alpha}^{(\nu)}| < \infty$ for every admissible value of α under the condition that $c_{\alpha}^{(\nu)} = 0$ for $\alpha > m_{\nu}$; let any accumulation point of $\{\lambda_{\nu}\}$, not belonging to $\{\lambda_{\nu}\}$ itself, be purely a non-isolated essential singularity of $S(\lambda)$, that is, let $S(\lambda)$ be so defined as to have not any term with isolated essential singularity on D; let Γ be a rectifiable closed Jordan curve oriented positively such that it contains $\{\lambda_{\nu}\}$ and all the accumulation points of $\{\lambda_{\nu}\}$ inside itself; let m be the greatest value of m_{ν} , $\nu = 1, 2, 3, \cdots$; let $\varphi_{\alpha}(\lambda)$ $= \sum_{\nu} c_{\alpha}^{(\nu)} (\lambda - \lambda_{\nu})^{-\alpha}$, where $\alpha = 1, 2, 3, \cdots, m$, and $c_{\alpha}^{(\nu)} = 0$ for $\alpha > m_{\nu}$; let $\Phi(\lambda) = \sum_{\alpha=1}^{m} \varphi_{\alpha}(\lambda)$; and let $R(\lambda)$ be the ordinary part of $S(\lambda)$. Then, for every point z inside Γ ,

$$\frac{1}{2\pi i} \int_{\Gamma} S(\lambda)(\lambda-z)^{-k} d\lambda = \frac{1}{2\pi i} \int_{\Gamma} \{S(\lambda) - \Phi(\lambda)\}(\lambda-z)^{-k} d\lambda$$
$$= R^{(k-1)}(z)/(k-1)!, \ k=1, 2, 3, \cdots$$

Proof. Let $\{\varphi_{\nu}\}_{\nu=1,2,3,\ldots}$ and $\{\psi_{\mu}\}_{\mu=1,2,3,\ldots}$ both be incomplete orthonormal sets in \mathfrak{H} such that $\{\psi_{\mu}\}$ determines the orthogonal complement of the subspace \mathfrak{M} determined by $\{\varphi_{\nu}\}$; and let $\Psi_{\mu} = \sum_{j=1}^{\infty} u_{\nu j} \psi_{j}$, where the matrix (u_{ij}) is an infinite unitary matrix with $|u_{jj}| \neq 1, j=1,2,3,\ldots$. If we now consider the operator N defined by

$$N = \sum_{\mu} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}} + c \sum_{\mu} \Psi_{\mu} \otimes L_{\psi_{\mu}},$$

where c is an arbitrarily given complex constant with absolute value not exceeding $\sup_{\nu} |\lambda_{\nu}|$, then N is a bounded normal operator with point spectrum $\{\lambda_{\nu}\}$ such that φ_{ν} is a normalized eigenelement of N corresponding to the eigenvalue λ_{ν} , and the spectra of N lie on the closed domain $\{\lambda:|\lambda| \leq \sup_{\nu} |\lambda_{\nu}|\}$ [1]. If we next put

$$f_{\alpha} = \sum_{\nu} \sqrt{\overline{c_{\alpha}^{(\nu)}}} \varphi_{\nu}, \quad \overline{f}_{\alpha} = \sum_{\nu} \sqrt{\overline{c}_{\alpha}^{(\nu)}} \varphi_{\nu},$$

where $(\sqrt{c_{\alpha}^{(\nu)}}\varphi_{\nu}, \sqrt{\overline{c}_{\alpha}^{(\nu)}}\varphi_{\nu}) = c_{\alpha}^{(\nu)}$, then f_{α} and $\overline{f_{\alpha}}$ both belong to \mathfrak{M} in accordance with the hypothesis $\sum_{\nu} |c_{\alpha}^{(\nu)}| < \infty$. On the other hand, we can find with the aid of the complex spectral family of N that the point spectrum of $(\lambda I - N)^{-\alpha}$ is given by $\{(\lambda - \lambda_{\nu})^{-\alpha}\}$ and that the eigenprojector of $(\lambda I - N)^{-\alpha}$ corresponding to the eigenvalue $(\lambda - \lambda_{\nu})^{-\alpha}$ is identical with that of N corresponding to the eigenvalue λ_{ν} . In consequence, any function $\varphi_{\alpha}(\lambda)$ defined in the statement of the present theorem is given by $((\lambda I - N)^{-\alpha} f_{\alpha}, \overline{f_{\alpha}})$ and the function $\Phi(\lambda) = \sum_{\alpha=1}^{m} \varphi_{\alpha}(\lambda)$ is regular on Γ . Since, in addition, the principal part of $S(\lambda)$ at any λ_{ν} in the sense of the functional analysis coincides with that of $\Phi(\lambda)$ at the same λ_{ν} , the first principal part of $S(\lambda)$ is given by $\Phi(\lambda)$. Suppose now that the set of all the accumulation points of $\{\lambda_{\nu}\}$ is

countable. Then, by the hypotheses concerning $S(\lambda)$, the second principal part of $S(\lambda)$ vanishes on D: for otherwise the set of all the accumulation points of $\{\lambda_{\nu}\}$ would form a set of non-zero measure, contrary to supposition. Accordingly $S(\lambda) - \Phi(\lambda)$ gives the ordinary part $R(\lambda)$ of $S(\lambda)$ on D. On the other hand, it follows from the regularity of $R(\lambda)$ on D that

$$\frac{1}{2\pi i} \int_{\Gamma} R(\lambda) (\lambda - z)^{-k} d\lambda = R^{(k-1)}(z)/(k-1)!, \ k = 1, 2, 3, \cdots$$

for every point z inside Γ . Furthermore, in the case where any $Q_{\alpha}(\lambda)$ in the preceding lemma vanishes, the lemma is also valid and hence applicable to the above defined function $\Phi(\lambda)$. In consequence, we obtain the relations required in the present theorem.

Suppose next that the set of all the accumulation points of $\{\lambda_{\nu}\}$ is uncountable. Then, by the hypotheses on $S(\lambda)$, the second principal part of $S(\lambda)$ never vanishes: for otherwise the set of all the accumulation points of $\{\lambda_{\nu}\}$ would become a set of measure zero, contrary to supposition. Hence $S(\lambda) - \Phi(\lambda)$ equals the sum of $R(\lambda)$ and the second principal part of $S(\lambda)$. Thus, by virtue of the application of the preceding lemma, we also obtain the required relations.

With these results, the proof of the theorem is complete.

Theorem 2. Let $\{\lambda_{\nu}\}$ and $\Phi(\lambda)$ be the same notations as those in Theorem 1 respectively; let Γ be a rectifiable closed Jordan curve containing the closed domain $\mathbb{D}\{\lambda:|\lambda| \leq \sup_{\nu} |\lambda_{\nu}|\}$ inside itself; and let N' be an arbitrary normal operator with norm not exceeding $\sup_{\nu} |\lambda_{\nu}|$. Then

$$\frac{1}{2\pi i}\int_{\Gamma} \Phi(\lambda)(\lambda I-N')^{-k}d\lambda=\boldsymbol{O}, \quad k=1,2,3,\cdots,$$

where Γ is positively oriented and O denotes the null operator.

Proof. Let $\{K'(z)\}$ denote the complex spectral family of N'. Then, by reference to the preceding lemma, we have

$$\frac{1}{2\pi i} \int_{\Gamma} \Phi(\lambda) (\lambda I - N')^{-k} d\lambda = \frac{1}{2\pi i} \int_{\Gamma} \Phi(\lambda) \int_{\mathfrak{D}} (\lambda - z)^{-k} dK'(z) d\lambda$$
$$= \int_{\mathfrak{D}} \left\{ \frac{1}{2\pi i} \int_{\Gamma} \Phi(\lambda) (\lambda - z)^{-k} d\lambda \right\} dK'(z)$$
$$= \mathbf{0}:$$

for the z in the integrand always remains inside Γ .

Theorem 3. Let $\{\lambda_{\nu}\}$, $S(\lambda)$, $R(\lambda)$, and Γ be the same notations as those in Theorem 1 respectively; and let N' be a normal operator with spectra lying inside Γ . Then

$$\frac{1}{2\pi i} \int_{\Gamma} S(\lambda) (\lambda I - N')^{-k} d\lambda = R^{(k-1)} (N') / (k-1)!, \quad k = 1, 2, 3, \cdots,$$

No. 6]

where $R^{(0)}(N')$ denotes R(N').

Proof. In the same manner as above, we can easily deduce the present theorem from Theorem 1.

References

- S. Inoue: Functional-representations of normal operators in Hilbert spaces and their applications, Proc. Japan Acad., 37, 614-618 (1961).
- [2] —: On the functional-representations of normal operators in Hilbert spaces, Proc. Japan Acad., 38, 18-22 (1962).

Addition to S. Inoue: "Some Analytical Properties of the Spectra of Normal Operators in Hilbert Spaces" (Proc. Japan Acad., **37**, No. 9, 566-570 (1961)).

Page 567, line 17: Add "for appropriately chosen N_j 's" between "that" and "there".