58. Some Applications of the Functional-Representations of Normal Operators in Hilbert Spaces

By Sakuji Inoue
Faculty of Education, Kumamoto University
Comm. by K. Kunugi, M.J.A., June 12, 1962)

Let \mathfrak{J} be the complex abstract Hilbert space which is complete, separable, and infinite dimensional; let N be a bounded normal operator in \mathfrak{F}; let $\left\{\lambda_{\nu}\right\}_{\nu=1,2,3}, \ldots$ be its point spectrum (inclusive of the multiplicity of each eigenvalue of N); let $\left\{\varphi_{\nu}\right\}_{\nu=1,2,3}, \ldots$ be an orthonormal set determining the subspace M determined by all the eigenelements of N, such that φ_{ν} is a normalized eigenelement of N corresponding to the eigenvalue λ_{ν}; let $\left\{\psi_{\mu}\right\}_{\mu=1,2,3, \ldots}$ be an orthonormal set determining the orthogonal complement \mathfrak{N} of \mathfrak{M}; and let L_{f} be the continuous linear functional associated with an arbitrary element $f \in \mathfrak{g}$. Then $\left\|N \psi_{\mu}\right\|^{2}$, $\mu=1,2,3, \cdots$, assume the same value, which will be denoted by σ; and if we choose arbitrarily a complex constant c with absolute value $\sqrt{\sigma}$ and put $\Psi_{\mu}=\sum_{j} u_{\mu_{j}} \psi_{j}$, where $u_{\mu_{j}}=\left(N \psi_{\mu}, \psi_{j}\right) / c$ and \sum_{j} denotes the sum for all $\psi_{j} \in\left\{\psi_{\mu}\right\}$, then the equality

$$
N=\sum_{\nu} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}+c \sum_{\mu} \Psi_{\mu} \otimes I_{\nu \mu_{\mu}}
$$

holds on the domain \mathfrak{F} of N, and moreover the infinite matrix ($\left(u_{i j}\right)$ associated with all the elements of $\left\{\psi_{\mu}\right\}$ is a unitary matrix with $\left|u_{j j}\right| \neq 1, j=1,2,3, \cdots$, and $\| N| |=\max \left(\sup \left|\lambda_{\nu}\right|,|c|\right)[2]$.

Lemma. Let $M=\max \left(\sup \left|\lambda_{\nu}\right|,|c|\right)$; let Γ be a rectifiable closed Jordan curve containing the closed domain $D\{\lambda:|\lambda| \leqq M\}$ inside itself; let f_{α} and $g_{\alpha}, \alpha=1,2,3, \cdots, m$, be arbitrarily given elements in \mathfrak{F}; let $\varphi_{\alpha}(\lambda)=\left((\lambda I-N)^{-\alpha} f_{\alpha}, g_{\alpha}\right)$ and $\Phi(\lambda)=\sum_{\alpha=1}^{m} \varphi_{\alpha}(\lambda)$; and let k be an arbitrary positive integer. Then

$$
F_{k}(z) \equiv \frac{1}{2 \pi i} \int_{\Gamma} \Phi(\lambda)(\lambda-z)^{-k} d \lambda=\left\{\begin{array}{l}
0 \text { (for every point } z \text { inside } \Gamma) \\
-\Phi^{(k-1)}(z) /(k-1)!(\text { for every point } \\
z \text { outside } \Gamma)
\end{array}\right.
$$

where the curvilinear integration is taken in the counterclockwise direction and 0 ! and $\Phi^{(0)}(z)$ denote 1 and $\Phi(z)$ respectively.

Proof. Let $\{K(\zeta)\}$ and $\Delta(N)$ denote the complex spectral family and the continuous spectrum of N respectively. By making use of $\{K(\zeta)\}$ we can first verify without difficulty that $(\lambda I-N)^{-\alpha}$ is a bounded normal operator for any λ belonging to the resolvent set of N. Consequently the functions $\varphi_{\alpha}(\lambda)$ and $\Phi(\lambda)$ both are significant for every $\lambda \in \Gamma$. In addition, it is evident that $\Phi(\lambda)$ is not only continuous but
also regular on Γ and that, though $\Phi(\lambda)$ has the set $\Delta(N) \cup\left\{\lambda_{\nu}\right\}$ of non-regular points inside Γ, the function $F_{1}(z)$ defined in the statement of the present lemma is regular inside and outside Γ by the continuity of $\Phi(\lambda)$ on Γ, as is well known in the function theory.

Let $f_{\alpha}=\sum_{\nu} a_{\nu}^{(\alpha)} \varphi_{\nu}+x_{\alpha}$, where $x_{\alpha}=\sum_{\mu}\left(f_{\alpha}, \psi_{\mu}\right) \psi_{\mu}$; let $g_{\alpha}=\sum_{\nu} b_{\nu}^{(\alpha)} \varphi_{\nu}+y_{\alpha}$, where $y_{\alpha}=\sum_{\mu}\left(g_{\alpha}, \psi_{\mu}\right) \psi_{\mu} ;$ let $P_{\alpha}(\lambda)=\sum_{\nu} a_{\nu}^{(\alpha)} \bar{b}_{\nu}^{(\alpha)}\left(\lambda-\lambda_{\nu}\right)^{-\alpha} ;$ and let $Q_{\alpha}(\lambda)$ $=\int_{\Delta(N)}(\lambda-\zeta)^{-\alpha} d^{\mu}\left(K(\zeta) x_{\alpha}, y_{\alpha}\right)$. Then, by means of the spectral integral
 $+\sum_{\alpha=1}^{m} Q_{\alpha}(\lambda)$. Moreover, by applying the inequalities $\sum_{\nu}\left|a_{\nu}^{(\alpha)} \bar{b}_{\nu}^{(\alpha)}\right|$ $\leqq\left\{\sum_{\nu}\left|a_{\nu}^{(\alpha)}\right|^{2}\right\}^{\frac{1}{2}}\left\{\sum_{\nu}\left|\bar{b}_{\nu}^{(\alpha)}\right|^{2}\right\}^{\frac{1}{2}}<\infty$ we can readily show that the series $P_{\alpha}(\lambda)$ is absolutely and uniformly convergent on Γ. Hence it is found with the help of the Cauchy theorem and the calculus of residues that

$$
\begin{aligned}
\int_{\Gamma} P_{\alpha}(\lambda)(\lambda-z)^{-1} d \lambda & =\sum_{\nu} \int_{\Gamma} a_{\nu}^{(\alpha)} \bar{b}_{\nu}^{(\alpha)}\left(z-\lambda_{\nu}\right)^{-1}\left\{(\lambda-z)^{-1}\left(\lambda-\lambda_{\nu}\right)^{-(\alpha-1)}-\left(\lambda-\lambda_{\nu}\right)^{-\alpha}\right\} d \lambda \\
& =\sum_{\nu} \int_{\Gamma} a_{\nu}^{(\alpha)} \bar{b}_{\nu}^{(\alpha)}\left(z-\lambda_{\nu}\right)^{-1}(\lambda-z)^{-1}\left(\lambda-\lambda_{\nu}\right)^{-(\alpha-1)} d \lambda \\
& =\sum_{\nu} \int_{\Gamma} a_{\nu}^{(\alpha)} \bar{b}_{\nu}^{(\alpha)}\left(z-\lambda_{\nu}\right)^{-2}\left\{(\lambda-z)^{-1}\left(\lambda-\lambda_{\nu}\right)^{-(\alpha-2)}-\left(\lambda-\lambda_{\nu}\right)^{-(\alpha-1)}\right\} d \lambda \\
& =\sum_{\nu} \int_{\Gamma} a_{\nu}^{(\alpha)} \bar{b}_{\nu}^{(\alpha)}\left(z-\lambda_{\nu}\right)^{-\alpha}\left\{(\lambda-z)^{-1}-\left(\lambda-\lambda_{\nu}\right)^{-1}\right\} d \lambda \\
& =\left\{\begin{array}{c}
0 \quad \text { (for every point } z \text { inside } \Gamma) \\
\left.-2 \pi i P_{\alpha}(z) \quad \text { (for every point } z \text { outside } \Gamma\right) .
\end{array}\right.
\end{aligned}
$$

Moreover it is clear that the same result as above holds for $\alpha=1$. In consequence,

$$
\sum_{\alpha=1}^{m} \int_{\Gamma} P_{\alpha}(\lambda)(\lambda-z)^{-1} d \lambda=\left\{\begin{array}{cc}
0 \quad \text { (for every point } z \text { inside } \Gamma) \\
\left.-2 \pi i \sum_{\alpha=1}^{m} P_{\alpha}(z) \text { (for every point } z \text { outside } \Gamma\right) .
\end{array}\right.
$$

On the other hand, we have

$$
\begin{aligned}
\int_{\Gamma} Q_{\alpha}(\lambda)(\lambda-z)^{-1} d \lambda & =\int_{\Gamma}(\lambda-z)^{-1} \int_{\Delta(N)}(\lambda-\zeta)^{-\alpha} d\left(K(\zeta) x_{\alpha}, y_{\alpha}\right) d \lambda \\
& =\int_{\Delta(N)} \int_{\Gamma}(\lambda-z)^{-1}(\lambda-\zeta)^{-\alpha} d \lambda d\left(K(\zeta) x_{\alpha}, y_{\alpha}\right)
\end{aligned}
$$

by considering the limit of a sequence of approximation sums of the curvilinear integral along Γ, while

$$
\begin{aligned}
& \int_{\Gamma}(\lambda-z)^{-1}(\lambda-\zeta)^{-\alpha} d \lambda=\int_{\Gamma}(z-\zeta)^{-\alpha}\left\{(\lambda-z)^{-1}-(\lambda-\zeta)^{-1}\right\} d \lambda \\
&(1 \leqq \alpha \leqq m, \zeta \in \Delta(N)) \\
&=\left\{\begin{array}{c}
0 \quad \text { (for every point } z \text { inside } \Gamma) \\
\left.-2 \pi i(z-\zeta)^{-\alpha} \text { (for every point } z \text { outside } \Gamma\right),
\end{array}\right.
\end{aligned}
$$

as can be shown by reasoning exactly like that applied to evaluate the integral $\int_{\Gamma} P_{\alpha}(\lambda)(\lambda-z)^{-1} d \lambda$. These results permit us to assert that

$$
\sum_{\alpha=1}^{m} \int_{\Gamma} Q_{\alpha}(\lambda)(\lambda-z)^{-1} d \lambda=\left\{\begin{array}{cc}
0 \quad(\text { for every point } z \text { inside } \Gamma) \\
\left.-2 \pi i \sum_{\alpha=1}^{m} Q_{\alpha}(z) \quad \text { (for every point } z \text { outside } \Gamma\right) .
\end{array}\right.
$$

In consequence,

$$
\frac{1}{2 \pi i} \int_{\Gamma} \Phi(\lambda)(\lambda-z)^{-1} d \lambda=\left\{\begin{array}{cc}
0 & \text { (for every point } z \text { inside } \Gamma) \\
-\Phi(z) & \text { (for every point } z \text { outside } \Gamma) .
\end{array}\right.
$$

Since, in addition, the function $F_{1}(z)$ defined by the left-hand member of the final relation is regular inside and outside Γ,

$$
\begin{aligned}
F_{1}^{(k-1)}(z) & =\frac{(k-1)!}{2 \pi i} \int_{\Gamma} \Phi(\lambda)(\lambda-z)^{-k} d \lambda \quad(z \bar{\epsilon} \Gamma) \\
& =\left\{\begin{array}{c}
0 \quad \text { (for every point } z \text { inside } \Gamma) \\
\left.-\Phi^{(k-1)}(z) \quad \text { (for every point } z \text { outside } \Gamma\right) .
\end{array}\right.
\end{aligned}
$$

Thus we obtain the required relation

$$
F_{k}(z)=\left\{\begin{array}{l}
0 \quad(\text { for every point } z \text { inside } \Gamma) \\
\left.-\Phi^{(k-1)}(z) /(k-1)!\text { (for every point } z \text { outside } \Gamma\right),
\end{array}\right.
$$

as we wished to prove.
Remark. Let $\left\{\lambda_{y}\right\}$ be an arbitrarily prescribed, countably infinite, and bounded set of points in the complex plane. Since, then, there exist bounded normal operators such that each of them has the set $\left\{\lambda_{\nu}\right\}$ as the point spectrum [1], it is seen that the lemma established above remains true even if the set of all the accumulation points of $\left\{\lambda_{\nu}\right\}$ is uncountable.

Definition. In the present lemma, $\sum_{\alpha=1}^{m} a_{\nu}^{(\alpha)} \bar{b}_{\nu}^{(\alpha)}\left(\lambda-\lambda_{\nu}\right)^{-\alpha}$ is called the principal part of $\Phi(\lambda)$ at λ_{ν}, and $\sum_{\alpha=1}^{m} P_{\alpha}(\lambda)$ and $\sum_{\alpha=1}^{m} Q_{\alpha}(\lambda)$ are called the first and second principal parts of $\Phi(\lambda)$ respectively. If, for a function $S(\lambda)$ defined on the domain $G\{\lambda:|\lambda|<\infty\}$, the function $R(\lambda)=S(\lambda)$ $-\{P(\lambda)+Q(\lambda)\}$, where $P(\lambda)$ and $Q(\lambda)$ are the first and second principal parts of $S(\lambda)$ respectively, is regular on G, then $R(\lambda)$ is called the ordinary part of $S(\lambda)$, including the case $Q(\lambda) \equiv 0$.

We shall discuss about such functions as consist of these three parts.

Theorem 1. Let $\left\{\lambda_{\nu}\right\}_{\nu=1,2,3}, \ldots$ be an arbitrarily prescribed, countably infinite, and bounded set of mutually distinct points in the complex plane such that the set of all the accumulation points of it is countable or uncountable; let $S(\lambda)$ be a function regular on the domain $D\{\lambda:|\lambda|<\infty\}$ with the exception of $\left\{\lambda_{\nu}\right\}$ and its accumulation points such that, in the sense of the functional analysis as stated in the earlier discussion, the principal part of $S(\lambda)$ at any λ_{ν} is expressible
in the form $\sum_{\alpha=1}^{m_{\nu}} c_{\alpha}^{(\nu)}\left(\lambda-\lambda_{\nu}\right)^{-\alpha}, \quad\left(m_{\nu}<\infty\right)$, where $\sum_{\nu}\left|c_{\alpha}^{(\nu)}\right|<\infty$ for every admissible value of α under the condition that $c_{\alpha}^{(\nu)}=0$ for $\alpha>m_{\nu}$; let any accumulation point of $\left\{\lambda_{\nu}\right\}$, not belonging to $\left\{\lambda_{\nu}\right\}$ itself, be purely a non-isolated essential singularity of $S(\lambda)$, that is, let $S(\lambda)$ be so defined as to have not any term with isolated essential singularity on D; let Γ be a rectifiable closed Jordan curve oriented positively such that it contains $\left\{\lambda_{\nu}\right\}$ and all the accumulation points of $\left\{\lambda_{\nu}\right\}$ inside itself; let m be the greatest value of $m_{\nu}, \nu=1,2,3, \cdots$; let $\varphi_{\alpha}(\lambda)$ $=\sum_{\nu} c_{\alpha}^{(\nu)}\left(\lambda-\lambda_{\nu}\right)^{-\alpha}$, where $\alpha=1,2,3, \cdots, m$, and $c_{\alpha}^{(\nu)}=0$ for $\alpha>m_{\nu}$; let $\Phi(\lambda)=\sum_{\alpha=1}^{m} \varphi_{a}(\lambda)$; and let $R(\lambda)$ be the ordinary part of $S(\lambda)$. Then, for every point z inside Γ,

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\Gamma} S(\lambda)(\lambda-z)^{-k} d \lambda & =\frac{1}{2 \pi i} \int_{\Gamma}\{S(\lambda)-\Phi(\lambda)\}(\lambda-z)^{-k} d \lambda \\
& =R^{(k-1)}(z) /(k-1)!, \quad k=1,2,3, \cdots .
\end{aligned}
$$

Proof. Let $\left\{\varphi_{\nu}\right\}_{\nu=1,2,3}, \ldots$ and $\left\{\psi_{\mu}\right\}_{\mu=1,2,3} \ldots$ both be incomplete orthonormal sets in \mathfrak{J} such that $\left\{\psi_{\mu}\right\}$ determines the orthogonal complement of the subspace \mathfrak{M} determined by $\left\{\varphi_{\nu}\right\}$; and let $\Psi_{\mu}=\sum_{j=1}^{\infty} u_{\mu_{j}} \psi_{j}$, where the matrix $\left(u_{i j}\right)$ is an infinite unitary matrix with $\left|u_{j j}\right| \neq 1, j=1,2,3$, \cdots. If we now consider the operator N defined by

$$
N=\sum_{\nu} \lambda_{\nu} \varphi_{\nu} \otimes L_{\varphi_{\nu}}+c \sum_{\mu} \Psi_{\mu} \otimes L_{\psi_{\mu}},
$$

where c is an arbitrarily given complex constant with absolute value not exceeding $\sup \left|\lambda_{\nu}\right|$, then N is a bounded normal operator with point spectrum $\left\{\lambda_{\nu}\right\}$ such that φ_{ν} is a normalized eigenelement of N corresponding to the eigenvalue λ_{ν}, and the spectra of N lie on the closed domain $\left\{\lambda:|\lambda| \leqq \sup \left|\lambda_{\nu}\right|\right\}[1]$. If we next put

$$
f_{\alpha}=\sum_{\nu} \sqrt{c_{\alpha}^{(\nu)}} \varphi_{\nu}, \quad \bar{f}_{\alpha}=\sum_{\nu} \sqrt{\overline{c_{\alpha}^{(\nu)}}} \varphi_{\nu},
$$

where $\left(\sqrt{\varepsilon_{\alpha}^{(\nu)}} \varphi_{\nu}, \sqrt{\overline{\epsilon_{\alpha}^{(\nu)}}} \varphi_{\nu}\right)=c_{\alpha}^{(\nu)}$, then f_{α} and $\overline{f_{\alpha}}$ both belong to \mathfrak{M} in accordance with the hypothesis $\sum_{\nu}\left|c_{\alpha}^{(\nu)}\right|<\infty$. On the other hand, we can find with the aid of the complex spectral family of N that the point spectrum of $(\lambda I-N)^{-\alpha}$ is given by $\left\{\left(\lambda-\lambda_{\nu}\right)^{-\alpha}\right\}$ and that the eigenprojector of $(\lambda I-N)^{-\alpha}$ corresponding to the eigenvalue $\left(\lambda-\lambda_{\nu}\right)^{-\alpha}$ is identical with that of N corresponding to the eigenvalue λ_{ν}. In consequence, any function $\varphi_{\alpha}(\lambda)$ defined in the statement of the present theorem is given by $\left((\lambda I-N)^{-\alpha} f_{\alpha}, \overline{f_{\alpha}}\right)$ and the function $\Phi(\lambda)=\sum_{\alpha=1}^{m} \varphi_{\alpha}(\lambda)$ is regular on Γ. Since, in addition, the principal part of $S(\lambda)$ at any λ_{ν} in the sense of the functional analysis coincides with that of $\Phi(\lambda)$ at the same λ_{ν}, the first principal part of $S(\lambda)$ is given by $\Phi(\lambda)$. Suppose now that the set of all the accumulation points of $\left\{\lambda_{\nu}\right\}$ is
countable. Then, by the hypotheses concerning $S(\lambda)$, the second principal part of $S(\lambda)$ vanishes on D : for otherwise the set of all the accumulation points of $\left\{\lambda_{\nu}\right\}$ would form a set of non-zero measure, contrary to supposition. Accordingly $S(\lambda)-\Phi(\lambda)$ gives the ordinary part $R(\lambda)$ of $S(\lambda)$ on D. On the other hand, it follows from the regularity of $R(\lambda)$ on D that

$$
\frac{1}{2 \pi i} \int_{\Gamma} R(\lambda)(\lambda-z)^{-k} d \lambda=R^{(k-1)}(z) /(k-1)!, k=1,2,3, \cdots
$$

for every point z inside Γ. Furthermore, in the case where any $Q_{a}(\lambda)$ in the preceding lemma vanishes, the lemma is also valid and hence applicable to the above defined function $\Phi(\lambda)$. In consequence, we obtain the relations required in the present theorem.

Suppose next that the set of all the accumulation points of $\left\{\lambda_{\nu}\right\}$ is uncountable. Then, by the hypotheses on $S(\lambda)$, the second principal part of $S(\lambda)$ never vanishes: for otherwise the set of all the accumulation points of $\left\{\lambda_{\nu}\right\}$ would become a set of measure zero, contrary to supposition. Hence $S(\lambda)-\Phi(\lambda)$ equals the sum of $R(\lambda)$ and the second principal part of $S(\lambda)$. Thus, by virtue of the application of the preceding lemma, we also obtain the required relations.

With these results, the proof of the theorem is complete.
Theorem 2. Let $\left\{\lambda_{\nu}\right\}$ and $\Phi(\lambda)$ be the same notations as those in Theorem 1 respectively; let Γ be a rectifiable closed Jordan curve containing the closed domain $\mathfrak{D}\left\{\lambda:|\lambda| \leqq \sup _{\nu}\left|\lambda_{\nu}\right|\right\}$ inside itself; and let N^{\prime} be an arbitrary normal operator with norm not exceeding $\sup _{\nu}\left|\lambda_{\nu}\right|$. Then

$$
\frac{1}{2 \pi i} \int_{\Gamma} \Phi(\lambda)\left(\lambda I-N^{\prime}\right)^{-k} d \lambda=O, \quad k=1,2,3, \cdots
$$

where Γ is positively oriented and \boldsymbol{O} denotes the null operator.
Proof. Let $\left\{K^{\prime}(z)\right\}$ denote the complex spectral family of N^{\prime}. Then, by reference to the preceding lemma, we have

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\Gamma} \Phi(\lambda)\left(\lambda I-N^{\prime}\right)^{-k} d \lambda & =\frac{1}{2 \pi i} \int_{\Gamma} \Phi(\lambda) \int_{\mathcal{D}}(\lambda-z)^{-k} d K^{\prime}(z) d \lambda \\
& =\int_{\mathscr{D}}\left\{\frac{1}{2 \pi i} \int_{\Gamma} \Phi(\lambda)(\lambda-z)^{-k} d \lambda\right\} d K^{\prime}(z) \\
& =\stackrel{O}{\mathbf{O}}
\end{aligned}
$$

for the z in the integrand always remains inside Γ.
Theorem 3. Let $\left\{\lambda_{\nu}\right\}, S(\lambda), R(\lambda)$, and Γ be the same notations as those in Theorem 1 respectively; and let N^{\prime} be a normal operator with spectra lying inside Γ. Then

$$
\frac{1}{2 \pi i} \int_{\Gamma} S(\lambda)\left(\lambda I-N^{\prime}\right)^{-k} d \lambda=R^{(k-1)}\left(N^{\prime}\right) /(k-1)!, \quad k=1,2,3, \cdots,
$$

where $R^{(0)}\left(N^{\prime}\right)$ denotes $R\left(N^{\prime}\right)$.
Proof. In the same manner as above, we can easily deduce the present theorem from Theorem 1.

References

[1] S. Inoue: Functional-representations of normal operators in Hilbert spaces and their applications, Proc. Japan Acad., 37, 614-618 (1961).
[2] -: On the functional-representations of normal operators in Hilbert spaces, Proc. Japan Acad., 38, 18-22 (1962).

Addition to S. Inoue: "Some Analytical Properties of the Spectra of Normal Operators in Hilbert Spaces" (Proc. Japan Acad., 37, No. 9, 566-570 (1961)). Page 567, line 17: Add "for appropriately chosen N_{j} 's" between "that" and "there".

