55. A Note on Hasse-Witt Matrices of Algebraic Curves of Positive Characteristic p

By Akikuni Kato and Hisasi Morikawa
Mathematical Institute, Nagoya University, Nagoya
(Comm. by Z. Suetuna, m.J.A., June 12, 1962)

1. Let A be an Abelian variety over a field k of positive characteristic p and $k(A)$ be the field of rational functions on A over k. Let A operate on $k(A)$ as follows:

$$
(a f)(x)=f\left(a^{-1} x\right)(f \in k(A) ; a, x \in A) .
$$

A derivation D of $k(A) / k$ is called an invariant derivation if $a \circ D \circ a^{-1}$ $=D(a \in A)$. It is known that the module of invariant derivations is a k-vector space $\mathfrak{M}(A)$ of the same dimension of A over k and for any $D \in \mathfrak{M}(A) D^{p}$ is also an invariant derivation. The dual space $(\mathfrak{M})^{*}(A)$ is the vector space of all invariant 1-differentials of $k(A) / k$. Let $\left\{D_{1}, \cdots, D_{n}\right\}$ be a k-base of $\mathfrak{M}(A)$ and $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$ be the dual k-base of $\mathbb{M}^{*}(A)$ with respect to $\left\{D_{1}, \cdots, D_{n}\right\}$, i.e. $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$ is a k-base of $\mathfrak{M}^{*}(A)$ such that

$$
\omega_{i}\left(D_{j}\right)= \begin{cases}1, & (i=j) \\ 0, & (i=j) .\end{cases}
$$

Then $\omega_{i}\left(D_{j}^{p}\right)(1 \leq i, j \leq n)$ are elements in k. We shall call the square matrix $\left(\omega_{i}\left(D_{j}^{p}\right)\right.$) the Hasse-Witt matrix of A with respect to the base $\left\{D_{1}, \cdots, D_{n}\right\}$.

In the present note we shall notice that, if J is a Jacobian variety of an algebraic curve Γ, the Hasse-Witt matrix is nothing else than a Hasse-Witt matrix of Γ introduced by Hasse and Witt. ${ }^{1)}$
2. We shall first recall the definition of a Hasse-Witt matrix of an algebraic curve. Let Γ be a non-singular complete curve defined over a field k of characteristic $p(>0)$ and g be the genus of Γ. For the sake of simplicity we may assume that k is algebraically closed. Let $P_{1}+\cdots+P_{g}$ be a non-special divisor of degree g on Γ and t_{1}, \cdots, t_{g} be local parameters at P_{1}, \cdots, P_{g}, respectively, and $\left\{\omega_{1}, \cdots, \omega_{g}\right\}$ be a base of k-vector space of all differentials of 1 st kind on Γ. Let $\omega_{i}=\left(\sum_{\nu} a_{i j}^{(\nu)} t_{j}^{\nu}\right) d t_{j}$ be the t_{j}-expansion of $\omega_{i}(1 \leq i, j \leq g)$, and $B^{(\nu)}$ be the matrix of which (i, j)-element is $a_{i j}^{(\nu)}(\nu=0,1,2, \cdots)$. Then Hasse and Witt defined the Hasse-Witt matrix H_{Γ} of Γ by $B^{(0)-1}$ $B^{(p-1)}$.

We shall choose local parameters t_{1}, \cdots, t_{g} respectively at P_{1}, \cdots, P_{g} such that

[^0](1)
$$
t_{i} \equiv 1 \quad \bmod P_{j}(i \neq j) .
$$

By Riemann-Roch Theorem such a system of local parameters always exists. We denote by $\Gamma=\Gamma_{1}, \Gamma_{2}, \cdots, \Gamma_{g}$ the copies of Γ and by $k\left(\Gamma_{i}\right)$ the field of rational functions on Γ_{i} over k, where $k\left(\Gamma_{1}\right), \cdots, k\left(\Gamma_{g}\right)$ are independent over k. We denote by σ_{i} the canonical isomorphism of Γ onto Γ_{i} and write simply $t_{j}^{(i)}$ instead of $\sigma_{i}\left(t_{j}\right)$. We denote by J the Jacobian variety of Γ and denote by φ the canonical mapping of Γ into J. We denote by the same notation φ the mapping of $\Gamma_{1} \times$ $\cdots \times \Gamma_{g}$ into J defined by $\varphi\left(\sigma_{1}(Q) \times \cdots \times \sigma_{g}\left(Q_{g}\right)\right)=\sum_{i=1}^{g} \varphi\left(Q_{i}\right)$. Then the field of rational functions $k\left(\Gamma_{1} \times \cdots \times \Gamma_{g}\right)$ on $\Gamma_{1} \times \cdots \times \Gamma_{g}$ is a finite separable normal algebraic extension of the field of rational functions $k(J)$ on J whose galois group is induced by the permutations of the factors $\Gamma_{1}, \cdots, \Gamma_{g}$. Namely $k(J)$ is the subfield of $k\left(\Gamma_{1} \times \cdots \times \Gamma_{g}\right)$ consisting of all f such that $f\left(\sigma_{1}\left(Q_{1}\right) \times \cdots \times \sigma_{g}\left(Q_{g}\right)\right)=f\left(\sigma_{1}\left(Q_{i_{1}}\right), \cdots, \sigma_{g}\left(Q_{i_{g}}\right)\right)$ for every permutation $\binom{1,2, \cdots, g}{i_{1}, i_{2}, \cdots, i_{g}}$. Since every derivation of $k(J)$ is uniquely extended to a derivation of $k\left(\Gamma_{1} \times \cdots \times \Gamma_{g}\right)$, we shall use same notations for restricted derivations and extended derivations. Since $\Gamma_{1} \times \cdots \times \Gamma_{g}$ and J are non-singular and φ is regular, the image $\varphi^{*}(\Omega)$ of an invariant 1 -differential ω on J is a 1 -differential of 1 st kind on $\Gamma_{1} \times \cdots \times \Gamma_{g}$. Such a 1-differential of 1st kind $\Omega^{\prime}=\varphi^{*}(\Omega)$ is characteriged by the invariantness for permutations of indices:

$$
\Omega^{\prime}\left(\sigma_{1}\left(Q_{1}\right), \cdots, \sigma_{g}\left(Q_{g}\right)\right)=\Omega^{\prime}\left(\sigma_{1}\left(Q_{i_{1}}\right), \cdots, \sigma_{g}\left(Q_{i_{g}}\right)\right)
$$

Namely Ω^{\prime} is the image of an invariant 1-differential on J if and only if $\omega^{\prime}=\sum_{\nu=1}^{g} \sigma_{\nu}(\omega)$ with a differential ω of 1 st kind on Γ. Moreover φ^{*} is a monomorphism of the module of invariant differentials on J into the module of differentials on $\Gamma_{1} \times \cdots \times \Gamma_{g}$. In the following we shall identify Ω with $\varphi^{*}(\Omega)$.

Let $\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{g}\right\}$ be a k-base of the module of all the differentials of 1st kind on Γ and put
(2)

$$
\begin{aligned}
& \Omega_{i}=\sum_{\nu=1}^{g} \sigma_{\nu}\left(\omega_{i}\right), \\
& s_{j}=t_{j}^{(j)}, \quad(1 \leq i, j \leq g) .
\end{aligned}
$$

Since the module of all the invariant 1 -differentials is the dual module of all the invariant derivations, there exists a k-base $\left\{D^{(1)}\right.$, $\left.\cdots, D^{(g)}\right\}$ of invariant derivations such that $\Omega_{i}\left(D^{(j)}\right)=1(i=j), 0(i \neq j)$, where $\left\{D^{(j)}\right\}$ are considered as extended derivations of $k\left(\Gamma_{1} \times \cdots \times \Gamma_{g}\right)$ induced by derivations $\left\{D^{(i)}\right\}$ of $k(J)$.
3. We shall show that the k-matrix $\left(\Omega_{i}\left(D^{(j) p}\right)\right.$) is the HasseWitt matrix of the algebraic curve. We denote by

$$
\begin{equation*}
\omega_{i}=\left(\sum_{\nu=0}^{\infty} a_{i j}^{(\nu)} t_{j}^{\nu}\right) d t_{j} \tag{3}
\end{equation*}
$$

the t_{j}-expansion of $\omega_{i}(1 \leq i, j \leq g)$. Then we have

$$
\begin{equation*}
\Omega_{i}=\left(\sum_{j=1}^{g} a_{i j}^{(\nu)} t_{j}^{(j) \nu}\right) d t_{j}^{(j)}=\left(\sum_{j=1}^{g} a_{i j}^{(\nu)} s_{j}^{\nu}\right) d s_{j}, \quad(1 \leq i \leq g) . \tag{4}
\end{equation*}
$$

Since $\left\{s_{1}, \cdots, s_{g}\right\}$ is a system of uniformizing parameters of $\Gamma_{1} \times \cdots \times \Gamma_{g}$ at $P_{1} \times P_{2} \times \cdots \times P_{g}$, there exists a base $\left\{D_{s_{1}}, \cdots, D_{s_{g}}\right\}$ of the space of all the derivations of $k\left(\Gamma_{1} \times \cdots \times \Gamma_{g}\right) / k$ such that (5)

$$
D_{s_{i}}\left(s_{j}\right)=\delta_{i j}, \quad(1 \leq i, j \leq g)
$$

We put

$$
\begin{equation*}
\alpha_{i j}\left(s_{j}\right)=\sum_{\nu=0}^{\infty} a_{i j}^{(\nu)} s_{j}^{\nu}, \quad(1 \leq i, j \leq g), \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
D^{(j)}=\sum_{l=1}^{g} \beta_{l j}(s) D_{s_{l}}, \quad(1 \leq j \leq g) . \tag{7}
\end{equation*}
$$

Then, since

$$
\begin{equation*}
\Omega_{i}=\sum_{l=1}^{g} \alpha_{i l}\left(s_{l}\right) d s_{l}, \quad(1 \leq i \leq g) \tag{8}
\end{equation*}
$$

we have

$$
\Omega_{i}\left(D^{(j)}\right)=\left(\sum_{l=1}^{g} \alpha_{i l} d s_{l}\right)\left(\sum_{l=1}^{g} \beta_{l j} D_{s_{l}}\right)=\sum_{i=1}^{g} \alpha_{i l} \beta_{l j}=\left\{\begin{array}{ll}
1 & (1=j) \\
0 & (i \neq j)
\end{array} .\right.
$$

This shows $\left(\beta_{i j}\right)$ is the inverse matrix of $\left(\alpha_{i j}\right)$. Hence we have

$$
\begin{equation*}
D_{s_{i}}=\sum_{l=1}^{g} \alpha_{i l}\left(s_{l}\right) D^{(l)},(1 \leq i \leq g) . \tag{9}
\end{equation*}
$$

We shall first prove

$$
\begin{equation*}
D_{s_{j}}^{p}=\sum_{l=1}^{g} D_{s j}^{p-1}\left(\alpha_{l j}\right) D^{(l)}+\sum_{l=1}^{g} \alpha_{l j}^{p} D^{(l) p},(1 \leq j \leq g) . \tag{10}
\end{equation*}
$$

Since $D_{s_{j}}^{p}$ is also a derivations, $D_{s_{j}}^{p}=\left(\sum_{z=1}^{g} \alpha_{j l}\left(s_{l}\right) D^{(l)}\right)^{p}$ is a linear combination of $D^{(h)}$ and $D^{(l) p}$ with coefficients in $k\left(\Gamma_{1} \times \cdots \times \Gamma_{g}\right)$ and the other terms $D^{\left(\iota_{1}\right)} \cdots D^{\left(l_{r}\right)}(2 \leq r \leq p-1)$ disappear in the expansion. By virtue of (6) $\alpha_{l j}$ is a function only on s_{j}, hence the coefficients of $D^{(h)}$ and $D^{(l) p}$ in $D_{s_{i}}^{p}$ are respectively $D_{s_{j}}^{p-1}\left(\alpha_{l j}\right)$ and $\alpha_{l j}^{p}$.
This proves (10).
Secondly we shall notice:

$$
\begin{equation*}
D_{s_{j}}^{p}=0, \quad(1 \leq j \leq g), \tag{11}
\end{equation*}
$$

since s_{1}, \cdots, s_{g} are independent elements in $k\left(\Gamma_{1} \times \cdots \times \Gamma_{g}\right)$.
Hence from (10) we have

$$
\begin{equation*}
\left.-\sum_{h=1}^{g} D_{s_{j}}^{p-1}\left(\alpha_{h j}\right) D^{(h)}\right)=\sum_{k=1}^{g} \alpha_{h j}^{p} D^{(h) p}, \quad(1 \leq j \leq g) . \tag{12}
\end{equation*}
$$

Operating Ω_{i} on the both sides of (12), we have

$$
-\sum_{n=1}^{g} D_{s_{j}}^{p-1}\left(\alpha_{h j}\right) \Omega_{i}\left(D^{(h)}\right)=\sum_{n=1}^{g} \alpha_{n j}^{p} \Omega_{i}\left(D^{(h) p}\right)
$$

and

$$
\begin{equation*}
-D_{s_{j}}^{p-1}\left(\alpha_{i j}\right)=\sum_{n=1}^{g} \alpha_{n j}^{p} \Omega_{i}\left(D^{(h) p}\right),(1 \leq i, j \leq g) . \tag{13}
\end{equation*}
$$

Hence from (6), comparing the constant terms of the both sides of (13), we have

$$
\begin{equation*}
-(p-1)!a_{i j}^{(p-1)}=\sum_{h=1}^{g} a_{h j}^{(0) p} \Omega_{i}\left(D^{(h) p}\right)(1 \leq i, j \leq g) . \tag{14}
\end{equation*}
$$

Since $(p-1)!\equiv-1 \bmod p$ ，（14）shows

$$
\left(\Omega_{i}\left(D^{(j) p}\right)\right)=A^{(p-1)}\left(A^{(0) ⿰ 丬}\right)^{-1}=A^{(0)} A^{(0)-1} A^{(p-1)}\left(A^{(0) \mathfrak{F})}\right),
$$

where $A^{(0) ⿰ 习 习}$ means the matrix whose（ i, j ）－element is $\alpha_{i j}^{(0) p}$ ．This shows that $\left(\Omega_{i}\left(D^{(j)} p\right)\right)$ is the Hasse－Witt matrix of Γ ．

Reference

［1］H．Hasse und E．Witt：Zyklische unverzweigte Erweiterungskörper von Prim－ zahlgrade p über einem algebraischen Funktionenkörper der Charakteristik p ， Mh．Math．Phs．，43，477－492（1936）．

[^0]: 1) See [1].
