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1. The first boundary value problem on Martin spaces induced
by Markoff chains has been studied by J. L. Doob [1, T. Watanabe
[6 and G. A. Hunt [4. Their arguments are based on the proba-
bilistic interpretation of the theory of R. S. Martin and the martingale
convergence theorem established by J. L. Doob. In this paper, we
state simple remarks for the conditions that any boundary point of
the Martin space induced by a Markoff chain is regular with respect
to the first boundary value problem. Our argument depends on the
properties of sojourn solutions studied by W. Feller [2_, but not
on the martingale convergence theorem. The author wishes to ex-
press his thanks to Prof. S. Tsurumi, Mr. K. Sato and Prof. T.
Watanabe for their valuable advice.

2. Let x(t) be a temporally homogeneous Markoff chain on a
countable set S with continuous time. We suppose that x(t) is
minimal in the sense of [3] and all points of S are transient and we
consider a fixed reference measure , introduced by G. A. Hunt
We concern with the Martin space M(--S+3S), with its topology
p, induced by x(t) with respect to r as in H. Kunita and T. Wata-
nabe [5. We shall denote by B(3s) the Borel field consisting of all
P-Borel subsets in 3S.

Let P(x, .) be the probability with the initial mass at x eS and
let z(i--0)-lin z(n), where z(n) is the n-th jumping time, then the

harmonic measure h(x, B) from x to BeB(S) is, in our case,
h(x, B)-- P(x, x(z(i--O)) B).

For any set AS,
S(x) P(x, [_J 1 (x(z(n)) A))

is called a sojourn solution and A a sojourn set, if S(y)>O. The
following Lemma 1 shows the close relation between harmonic
measures and sojourn solutions.

We introduce here some notations:
(S)--(b; b3S, h(y, G)>O for any open neighborhoocl G of b.).
For any b3S and a, fl>O, let

G2=(b’; b’ 3S, p(b’, b)

_
G.--(x; xe S, p(b, x) _a),
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ac:
3U;--(b’; b’
u (x; x s, (x, ac:) _< ).

For simplicity, we shall treat only the case where (5S)-(5S)
in the following arguments.

Lemma 1. For any set BeB(3S) for which h(7, B)>O there
exists a sojourn set AS such thal h(x, B)--S,(z) z eS.

Proof. First suppose that B is closed. For any a>0, consider
3D and D defined by

OD,--(b; be3S, p(b,
D (x; x S, p(x, B)

_
).

Clearly D is a sojourn set and D tends to B as a tends to 0.
Moreover, there exists at least one countable set (a)(0, 1) such
that , 0 (i-++ ),

h(x, D,,) S,,(x) x S.
In fact, for every xS, we define

N=(a; a(0, 1), P(x, x(z(i--o))(3D--(3D))) >0),
then it is clear that each N$ is a countable set, and that, for any
aCN= UN$,

P(x, x(z(i--O))3D)=P(x, [J (x(z(n))eD)) xeS.

Since h(, 3D,) decreases to h(, B), by Theorem 9.8 in Feller’s
paper [2] (from now on, we shall denote this by ([2] Theorem 9.3),
h(, B) is a sojourn solution.

For any open set and then for any general Borel subset of S,
the above assertion may be verified by using the usual approximation
methods and ([2] Theorem 9.3).

Finally, let A, for any (0<< 1) be
A. (x; x S, h(x, B) > 1--),

then by ([2 Lemma 9.1),
h(x, B)=S.(x) x S,

the assertion is proved.
By using the similar results as that proved in Lemma 1, we

shall obtain the following:

Lemma 2. Let M(0, 1) be, for any be3S,
M=(a; a(0,1), h(x,G)#-S(x) for some xS),

then M is at most countable. And let N2(0, 1) be, for any be3S
and

N2-(fl; e (0, 1), h(x, 3U]) S(x) for some x e S),
then N2 is at most countable.

Theorem 1. For any be3S and 3G., the following conditions are
mutually equivalent.
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(A) lim h(x, G2)= 1,

(B) lira h(x, aG2)= 1 exists,
x-/)

(C) let the set A. for any number s(0sl) be
A. (x; x S, h(x, aG2) > 1-- ),

then there exists ao > 0 such that
G,oA..

Proof. Since (C)o(A)o(B) is clear, it suNces to show (B)(C).
Suppose that there exist so (0<s0<l) and a fundamental sequence
(y), which ends to b as m tends to infinity, such that

(y)S--A,,.
Then it follows that (y)U., where

U.=(x; xS, h(x, C2)> 1- s),
1 o.

By the condition (B), for any (s4sl), there exists a number
fl0 such that

h(x,
holds for any xG with fl<fl0. Let fl and ’ be so small that

(G, U;,) >0,
and flM, fl’ N2. Then

s;,(x)- h(x, U;,) ah(x, C2)-S.(x),
and so, by ([23 Lemma 9.2),

sz.()=s.(),
where U.--U.U5. Let (G) be the representative sojourn set of

G2. Then, by ([23 Lemma 8.2), we have
(1) s.()-s)(x)+
Using ([2J Lemma 4.2) and ([23 Lemma 8.2) again, we have, by

simple calculations,
(2) S.(x)- s.(x)
Combining (1) and (2), it follows that

This contradicts to our assumption (S)=(S). Thus the asser-
tion is proved.

Theorem 2. Let b be any fixed boundary point. The conditions
(A), (B), and (C) for any G2 in the preceding theorem are equivalent
to the following condition: for any continuous function f on S,
there exists an x(t)-harmonic function u on S such that

im u(x)=f().
Proof. Suppose that (A) for any G2 holds. Let a function u

on S be
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then it is easily seen that u is x(t)-harmonic on S by virtue of the
main representation theorem of x(t)-harmonic functions in the theory
of Martin boundary (cf. [1, 4, [7).

Since f is continuous on 3S, for any >0, there exists a>O
such that

f(b’)-- f(b) < s
for any b’OG. Thus

sh(x, OG:)+ 211 f Ih(x, oC2).
Letting xb, we have

lim u(x)--f(b) N s.

Since s is arbitrary, the assertion follows.
The proof of the inverse part of the theorem is clear.
3. We introduce here the generalized Poisson kernels K(r,x, b)

for any xS and b3S:
K(r, x, b)--lim G(x, y)iG(r, y),

y.b

where G(x, y)-oP(x, x(z(n))-y). Note that the above limit exists
by the very definition of the Martin boundary. We shall present
the sufficient condition for (A) in Theorem 1 by using the properties
of the generalized Poisson kernels.

We may readily verify the following:
Theorem 3. 1) Let b be any fixed boundary point. The follow-

ing eondition (D)+(D) is a sufficient eondition for (A).
(D) For any fixed 3G, there exist a0>0 and K>O, which depend
only on a, such that, for any xG,,

K(r, , b’) K< +
holds for h(r, .)-almost all b’eOC,
(D) lira K(r, x, b’) exists for h(r, .)-almost all b’ 3C.

2) If (D) is satisfied, then (D) and the following eondition (D)
are mutually equivalent.
(Da) lim K(p, x, b’)=0 for h(r, .)-almost all b’ 3C.

xb
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