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111. A Note on the Extension of Semigroups with Operators

By Takayuki TAMURA and Donald G. BURNELL
University of California, Davis, California, U.S.A.

(Comm. by K. SHODA, Oct. 12, 1962)

In this note we shall report some theorems concerning the theory
of extension of semigroups with operators, without detailed proof.
By a mono-endomorphism of a semigroup we mean a one-to-one
endomorphism of a semigroup. Let S be a semigroup which is not
necessarily commutative and suppose that F is a commutative semi-
group of some mono-endomorphisms a of S, that is, F is not neces-
sarily composed of all mono-endomorphisms of S. Let-b denote the
operation in S and

(1.1) a(x q- y) ax-k ay

(1.2) (a)x-(a)x for a, flF; x, yeS.

(1.3) ax-ay implies x-y

We shall call such an S a semigroup with F denoted by (s, F).
Theorem 1. For (S, F), there exists (S, F) such that

(2.1) S s embedded into S,
(2.2) I" and I" are isomorphic,

(2.3) Each -eF is an extension of aeF to S, and- is an auto-

morphism of S.

(2.4) (S.I) is the smallest extension of (S,F) in the following

meaning: If (S, F) is any extension satisfying (2.1), (2.2), and
(2.3), then S is embedded into S.

Proof. Consider the set of all pairs (x, a) of x eS and a eF and
we introduce a relation as (x, a)(y, fl) iff flx-ay. Then it is an
equivalence relation. Let (x, a) denote an equivalence class containing

(x, a) and let S be the set of all equivalence classes. We define an

operation in S as follows:

(x,
It is shown that this operation is single valued on S, and S is a
semigroup into which S is embedded under the mapping X:Sx-

(ax, a)eff where (ax, a) is independent of the choice of a. For each

a, a mapping of S into S is defined as follows:

We can see that this mapping is single-valued on S and is a mono-
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endomorphism of S. Clearly the mapping a-> gives an isomorphism

of F to F. It follows from the definition of that is an exten-
sion of a. In the proof of automorphism, we must show that is

subjective. In fact, for any (x, a)eS and any -eF

Finally, to prove (2.4), let be an extension of a to S. If we define

the mapping T of S into S as

T(x, a)--y where y--Xx, xeS, yeS,

then we can prove that T is an isomorphism of S into S.
By the way, if S is cancellative, then S is also; if S is a group,

so is S; if S is commutative S is also.

Since F in Theorem 1 is commutative and cancellative, it is

possible to embed F into a group.

Theorem 2. For (S,F), there exists (S,F*) such that

(3.1) S is embedded into S,
(3.2) F* is the smallest commutative group into which F is embedded,
(3.3) Each fieF* is an automorphism of S. If aeF is mapped to

a*eF* under the embedding of F into F*, then each a* is

an extension of aeF to S.

(3.4) If (S, F**) is any extension satisfyiny (3.1), (3.2), and (3.3), then
S and F* are embedded into S and F** respectively.

Proof. By Theorem 1, we have obtained an extension (S, F)of
(S,F). Consider the set F* of all pairs ((, )) of elements of F
with identifying ((, ))-((, 3)) as -. To simplify the notations,

((, )) denotes again the equivalence class containing ((, -)). We
define a mapping ((, )) of S into itself as follows

clearly ((, )) ((, ))-((, ))-((y, )).
It is shown that ((, fl)) is an automorphism of S and F is embedded
into F* with the correspondence

-((, ))-*
where a* is easily seen to be an extension of a to S. As is well
known, F* is the smallest group containing F.

Remark. Instead of F, consider Fo as follows: Suppose

(4.1) Fo contains a zero-mapping , i.e., a mapping of all elements
to a definite element.

(4.2) is a two-sided zero of Fo.
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(4.3) Fo contains no zero-divisor.
Then we get the similar theorems such as Theorems 1, 2.

Let S be a commutative semigroup. For every positive integer
n, we consider an endomorphism n of S:

n.x-x+.. .+x.
n

The operator semigroup F of some endomorphisms of this kind is
considered as a subsemigroup of the multiplicative semigroup of
positive integers. A commutative semigroup T is said to be uniquely
F-divisible if for any x e T and for any ne F, there is exactly one
ye T such that n.y-x. S is said to be F-cancellative if n.x-n.y
implies x-y for every n eF.

As an application of Theorem 1, we get immediately
Theorem 3. If a commutative semigroup S is F-cancellative then

S is embedded in the smallest uniquely F-divisible semigroup.
We define a semiring R to be an algebraic system with two binary

operationsaddition and multiplicationsuch that for every x, y, zeR
(5.) (x+y)+z-x+(y+ z)
(5.2) (x)z-x(z)
(5.3) x(y-+-z)--xy-xz, (y-z)x--yx-zx.

Theorem 4. If the multiplicative semigroup of a semiring R is
commutative and if, for any non-zero element a,

ab--ac implies b=c,
then R is embedded into the smallest semiring R* such that the
multiplicative semigroup of R* is commutative group or group with
zeYo.

Let S be a commutative semigroup and let F be a multiplicative
semigroup of positive integers and suppose S is cancellative and F-
cancellative, that is,

x+y--x+z impliesy--z
n.x=n.y impliesx--y for every nF.

S denotes the smallest group containing S and S the smallest
uniquely F-divisible semigroup containing S. Then we have

(S)
_
(S), (S )

_
S (S) _- S

where - means "isomorphic".
If we regard these results as gb=Sg, g-g, b=b, then it follows

that g and b generate a semilattice of order 3. Further applying
these operations to direct product, we have

,S x S) S x S. (S x S.) S x S.
where both S and S. are eaneellative and F-eaneellative.

Added note: We have not used assoeiativity of S in the proof

of Theorems 1, 2 exeept for the proof of assoeiativity of S. There-
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fore the theorems are available for the extension (S, F) or (S, F*)
of a groupoid (S, F) with operators, where a groupoid is a system
with a binary operation and the conditions concerning F are not
changed.


