108. Some Characterizations of m-paracompact Spaces. I

By Tadashi Ishii

Utsunomiya College of Technology (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1962)

Recently K. Morita [4] has introduced a notion of m-paracompactness, and proved some interesting results concerning it. For any infinite cardinal number m, a topological space X is said to be mparacompact if any open covering of X with power $\leq m$ (i.e. consisting of at most m sets) admits a locally finite open covering as its refinement.

The purpose of this paper is to give some characterizations of m-paracompactness, which are related to the results obtained by H.H. Corson [1] and E. Michael [3] to characterize paracompactness of a topological space.

1. The following theorem is a modification of Corson's result ([1, Theorem 1]).

Theorem 1. For a normal space X the following statements are equivalent.

(a) X is m-paracompact.

(b) If \mathfrak{F} is a filter base on X with power $\leq \mathfrak{m}$ (i.e. consisting of at most \mathfrak{m} sets) such that the image of \mathfrak{F} has a cluster point in any metric space into which X is continuously mapped, then \mathfrak{F} has a cluster point in X.

Proof. (a) \rightarrow (b). Let $\mathfrak{F} = \{F_{\lambda} | \lambda \in \Lambda\}$ be a filter base in X with $|\Lambda| \leq \mathfrak{m}$ such that the image of \mathfrak{F} has a cluster point in any metric space into which X is continuously mapped.¹⁾ Assume that \mathfrak{F} has no cluster point in X. Then $\mathfrak{G} = \{X - \overline{F}_{\lambda} | \lambda \in \Lambda\}$ is an open covering of X with power $\leq \mathfrak{m}$, since $\bigcap \overline{F}_{\lambda} = \phi$. Let $\mathfrak{U} = \{U_{\alpha} | \alpha \in \Omega\}$ be a locally finite open refinement of \mathfrak{G} , where we can assume that $|\Omega| \leq \mathfrak{m}$. Since X is normal, there exists a closed covering $\{K_{\alpha} | \alpha \in \Omega\}$ of X such that $K_{\alpha} \subset U_{\alpha}$ for every $\alpha \in \Omega$. Hence there exists, for each α , a continuous function $f_{\alpha}: X \rightarrow I = [0, 1]$ such that $f_{\alpha}(x)$ is 1 or 0 according as $x \in K_{\alpha}$ or $x \in X - U_{\alpha}$. Now for every point x of X we assign an element $\varphi(x) = \{f_{\alpha}(x) | \alpha \in \Omega\}$. Let $Y = \varphi(X)$, and let us introduce a distance d in Y such that

 $d(\varphi(x_1),\varphi(x_2)) = \sum_{\alpha \in \mathcal{G}} |f_{\alpha}(x_1) - f_{\alpha}(x_2)|,$

where $\varphi(x_i) = \{f_{\alpha}(x_i) | \alpha \in \Omega\}$ (i=1, 2). Then it is obvious that φ is a continuous mapping of X onto a metric space Y. Let $V_{\alpha} = \{\varphi(x) | f_{\alpha}(x) > 0\}$.

¹⁾ For any set A, we denote by |A| the cardinal number of A.

Then $\{V_{\alpha} | \alpha \in \Omega\}$ is an open covering of Y such that $\varphi^{-1}(V_{\alpha}) \subset U_{\alpha}$. We must now prove that any point y of Y is not a cluster point of $\{\varphi(F_{\lambda}) | \lambda \in \Lambda\}$. Since y is contained in some V_{α} , and $\varphi^{-1}(V_{\alpha}) \subset U_{\alpha} \subset X - \overline{F}_{\lambda}$ for some $\lambda \in \Lambda$, we obtain $\varphi^{-1}(V_{\alpha}) \cap F_{\lambda} = \phi$. Hence $V_{\alpha} \cap \varphi(F_{\lambda}) = \phi$. Thus $\{\varphi(F_{\lambda}) | \lambda \in \Lambda\}$ has no cluster point in Y.

(b) \rightarrow (a). Let $\mathfrak{U} = \{U_{\lambda} | \lambda \in \Lambda\}$ be an open covering of X with power $\leq \mathfrak{m}$. Then $\mathfrak{F} = \{F_{\lambda} \mid \lambda \in \Lambda\}$ is a filter base of power $\leq \mathfrak{m}$, where $F_{\lambda} = X$ $-U_{\lambda}$. Let Y be any metric space such that X is continuously mapped into it, and we denote by f this continuous mapping. Under the assumption that U has no locally finite open refinement, we shall prove that the image of \mathfrak{F} has a cluster point in Y, that is, $\bigcap \overline{f(F_{\lambda})} \neq \phi$. Then we have $\bigcap F_{\lambda} \neq \phi$ by (b), which contradicts $\bigcap F_{\lambda} = \phi$. Now let $\bigcap \overline{f(F_{\lambda})} = \phi.$ Then $\mathfrak{G} = \{G_{\lambda} | \lambda \in \Lambda\}$ is an open covering of Y, where Since Y is a metric space, there exists a locally $G_{\lambda} = Y - f(F_{\lambda}).$ finite normal open refinement $\mathfrak{H} = \{H_{\alpha} | \alpha \in \Omega\}$ of \mathfrak{G} . Then $\{f^{-1}(H_{\alpha}) | \alpha \in \Omega\}$ is a locally finite normal open covering of X. Since \mathfrak{U} has no locally finite open refinement, there exists a set $f^{-1}(H_{\alpha})$ such that $f^{-1}(H_{\alpha})$ $\notin U_{\lambda}$ for every $\lambda \in \Lambda$. Therefore $H_{\alpha} \cap f(F_{\lambda}) \neq \phi$ for every $\lambda \in \Lambda$. This is contradictory to the fact that $G_{\lambda} \cap \overline{f(F_{\lambda})} \neq \phi$ for every $\lambda \in \Lambda$, because H_{α} is contained in some $G_{\lambda} \in \mathcal{G}$. Hence we have $\bigcap \overline{f(F_{\lambda})} \neq \phi$. This completes the proof.

In the proof that $(b) \rightarrow (a)$, we do not use the assumption that X is normal. Therefore we have the following

Corollary 1. ([1, Theorem 1]) For a Hausdorff space X the following statements are equivalent.

(a) X is paracompact.

(b) If \mathfrak{F} is a filter in X such that the image of \mathfrak{F} has a cluster point in any metric space into which X is continuously mapped, then \mathfrak{F} has a cluster point in X.

If $\mathfrak{m} = \aleph_0$ in Theorem 1, we have the following

Corollary 2. For a normal space X the following statements are equivalent.

(a) X is countably paracompact.

(b) If \mathfrak{F} is a countable filter base in X such that the image of \mathfrak{F} has a cluster point in any metric space into which X is continuously mapped, then \mathfrak{F} has a cluster point in X.

2. The following theorem is a modification of a theorem of E. Michael ([3, Proposition 2]) and is essentially proved by K. Morita [4]. We shall give here our proof based on the same idea as in the proof of [3, Proposition 2].

Theorem 2. The following properties of a normal space are equivalent.

No. 8]

(a) X is m-paracompact.

(b) Every open covering of X with power $\leq m$ has a partition of unity subordinated to it.

Proof. (a) \rightarrow (b). This is trivial, since every open covering of X with power $\leq m$ has a locally finite partition of unity.

 $(b) \rightarrow (a)$. As a first step, we prove that X is countably paracompact. For this purpose, by [2, Theorem 3], it is sufficient to prove that each countable open covering of X admits a σ -locally finite closed refinement. But we can prove that each open covering of X with power $\leq \mathfrak{m}$ admits a σ -locally finite closed refinement. In fact, let $\mathfrak{U} = \{U_{\lambda} | \lambda \in \Lambda\}$ be an open covering of X with $|\Lambda| \leq \mathfrak{m}$. Then there exists a partition of unity Φ subordinated to it. For each positive integer i, let \mathfrak{F}_i be the collection of all sets of the form $\{x \in X \mid \phi(x) \ge 1/i\}$, with $\phi \in \Phi$, and let $\mathfrak{F} = \bigcup_{i=1}^{m} \mathfrak{F}_i$. Clearly \mathfrak{F} is a closed refinement of \mathfrak{U} . To prove that \mathfrak{F} is locally finite, pick a finite subset Φ_0 of Φ , for any $x_0 \in X$, such that $\sum_{\phi \in \Phi_0} \phi(x_0) > 1 - 1/2i$, and then pick a neighborhood W of x_0 such that $\sum_{\phi \in \Phi_0} \phi(x) > 1 - 1/i$ for all $x \in W$. Then W cannot intersect $\{x \in X | \phi(x) \ge 1/i\}$ unless $\phi \in \Phi_0$, and therefore W intersects only finitely many elements of \mathfrak{F}_i . Hence \mathfrak{F} is a σ locally finite closed refinement of \mathfrak{U} . Therefore X is countably paracompact. By the similar arguments as above we can show that every open covering of X with power $\leq m$ admits a σ -locally finite open refinement. (Replace $\{x \in X | \phi(x) \ge 1/i\}$ with $\{x \in X | \phi(x) > 1/i\}$.) Hence, by $\lceil 4$, Theorem 1.1 (e), X becomes *m*-paracompact. This completes the proof.

It should be noted that, in the proof that $(b) \rightarrow (a)$, we do not use normality of X. For a topological space X, as the proof above shows, (b) implies that every open covering of X with power $\leq m$ admits a σ -locally finite open refinement. For a T_1 -space X, (b) implies also complete regularity of X. By using these properties, Michael [3] has proved his result ([3, Proposition 2]):

The following properties of a T_1 -space are equivalent.

(a) X is paracompact.

(b) Every open covering of X has a partition of unity subordinated to it.

Corollary. The following properties of a normal space are equivalent.

(a) X is countably paracompact.

(b) Every countable open covering of X has a partition of unity subordinated to it.

References

- H. H. Corson: The determinations of paracompactness by uniformities, Amer. J. Math., 80, 185-190 (1958).
- [2] M. J. Mansfield: On countably paracompact normal spaces, Can. J. Math., 9, 443-449 (1957).
- [3] E. Michael: A note on paracompact spaces, Proc. Amer. Math. Soc., 4, 831-838 (1953).
- [4] K. Morita: Paracompactness and product spaces, Fund. Math., 50, 223-236 (1961).