105. Relations among Topologies on Riemann Surfaces. IV

By Zenjiro Kuramochi
Mathematical Institute, Hokkaido University
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1962)
Example 4. Let \mathfrak{R} be a circle $|z+1|<1$. Let R_{n} be a domain such that $R_{n}: \frac{1}{2^{n}} \geqq|z| \geqq \frac{1}{2^{n+1}},|\arg z| \leqq \frac{\pi}{16}$ and put $\sum_{n=1}^{\infty} R_{n}=R$ and $D=\Re-R$. Domain \mathfrak{D}. Let Λ_{n} and Γ_{n} be domains as follows:

$$
\begin{aligned}
& \Lambda_{n}: \frac{1}{2^{n+1}}+a_{n}>|z|>\frac{1}{2^{n}} \text { and } a_{n}<\frac{1}{3 \times 2^{n+1}}, \quad|\arg z|<\frac{\pi}{16} \\
& \Gamma_{n}: \frac{1}{2}\left(\frac{1}{2^{n}}+\frac{1}{2^{n+1}}\right) \geqq|z| \geqq \frac{1}{2}\left(\frac{1}{2^{n+1}}+\frac{1}{2^{n+2}}\right), \quad|\arg z| \leqq \frac{\pi}{8}
\end{aligned}
$$

where a_{n} will be determined. Then $\Gamma_{n} \supset \Lambda_{n}$ and dist $\left(\partial \Gamma_{n}, \Lambda_{n}\right)>0$. Let $G\left(z, p_{0}, \mathfrak{R}\right)$ be the Green's function of \mathfrak{R}, where $p_{0}=-\frac{3}{2}$. Put $M_{n}=\max G\left(z, p_{0}, \mathfrak{R}\right)$ on $\partial R_{n}+\partial R_{n+1}$. Let $w\left(z, \Lambda_{n}, D\right)$ be the harmonic measure of $\Lambda_{n}-D$ relative to D. Now D is simply connected and $\operatorname{dist}\left(\partial \Gamma_{n}, \Lambda_{n}\right)>0$. Hence by Lemma 3 or 5 we can find a constant a_{n} such that

$$
\begin{equation*}
M_{n} w\left(z, \Lambda_{n}, D\right) \leqq \frac{1}{4^{n}} G\left(z, p_{0}, D\right) \quad \text { on } \quad \partial \Gamma_{n} . \tag{15}
\end{equation*}
$$

We suppose a_{n} is defined as above. Put $\mathfrak{D}=\Re-R+\sum_{n=1}^{\infty} \Lambda_{n}$. Now $M_{n} w\left(z, \Lambda_{n}, D\right)=0=\frac{1}{4^{n}} G\left(z, p_{0}, D\right)$ on $\partial D-\Gamma_{n}$. Hence by the maximum principle $M_{n} w\left(z, \Lambda_{n}, D\right) \leqq \frac{1}{4^{n}} G\left(z, p_{0}, D\right)$ in $D-\Gamma_{n}$. By $M_{n} \geqq G\left(z, p_{0}, \mathfrak{R}\right)$ $\geqq G\left(z, p_{0}, \mathfrak{D}\right)$ on $\partial \Lambda_{n}$ we have $M_{n} \geqq M_{n} w\left(z, \Lambda_{n}, D\right)+G\left(z, p_{0}, D\right) \geqq G\left(z, p_{0}, \mathfrak{D}\right)$

Fig. 7
on $\partial D \cap \partial \Lambda_{n}$. Now $M_{n} w\left(z, \Lambda_{n}, D\right)+G\left(z, p_{0}, D\right)=G\left(z, p_{0}, D\right)=0$ on $\partial D-\partial \Lambda_{n}$. Hence by the maximum principle $\sum_{n=1}^{\infty} M_{n} w\left(z, \Lambda_{n}, D\right)+G\left(z, p_{0}, D\right) \geqq G(z$, $\left.p_{0}, \mathfrak{D}\right) \geqq G\left(z, p_{0}, D\right)$ in D and by (14)

$$
\begin{equation*}
\left(1+\sum_{n=1}^{\infty} \frac{1}{4^{n}}\right) G\left(z, p_{0}, D\right) \geqq G\left(z, p_{0}, \mathfrak{D}\right) \geqq G\left(z, p_{0}, D\right) \text { in } D-\sum_{n=1}^{\infty} \Gamma_{n} . \tag{16}
\end{equation*}
$$

Let $\left\{p_{n}^{i}\right\}(i=1,2$, and $n=1,2,3, \cdots)$ be a sequence such that $p_{n}^{i}:|z|$ $=\frac{1}{2^{n}}$, $\arg z=\frac{\pi}{4}$ for $i=1$ and $-\frac{\pi}{4}$ for $i=2$. Clearly $\left\{p_{n}^{1}\right\}$ in D determines different K-Martin's point from that of $\left\{p_{n}^{2}\right\}$, i.e. $\lim _{n} K(z$, $\left.\left\{p_{n}^{1}\right\}, D\right)$ and $\lim _{n} K\left(z,\left\{p_{n}^{2}\right\}, D\right)$ are linearly independent. Now $p_{n}^{i} \in D$ $-\sum_{n=1}^{\infty} \Gamma_{n}$. Let $\left\{p_{n^{i}}^{i}\right\}$ be a subsequence of $\left\{p_{n}^{i}\right\}$ such that $\left\{p_{n^{i}}^{i}\right\}$ determine K-Martins point relative to \mathfrak{D}. Then by (16) and by Lemma 8 ${ }_{e x}\left(\lim _{n^{\prime}} K\left(z,\left\{p_{n^{\prime}}^{i}\right\}, D\right)\right.$ (from D to \mathfrak{D} relative to $\left.\left\{v_{n}\right\}\right)>\infty$. Where v_{n} $=E\left[z:|z|<\frac{1}{2^{n}}\right]$. Thus we have

Proposition 1. There exist at least two K-Martin's points of (1) on $z=0$.

Domain Ω. Let Γ_{n}^{\prime} and $T_{n}(n=1,2,3, \cdots)$ be a domain and a system of circular slits: $T_{n}=\sum_{i} t_{n}^{i}$ in R_{n} as follows:

$$
\Gamma_{n}^{\prime}: \frac{1}{2^{n}}+\frac{a_{n-1}}{2} \geqq|z| \geqq \frac{1}{2^{n+1}}+\frac{a_{n}}{2}, \quad|\arg z| \leqq \frac{\pi}{8}
$$

T_{n} is contained in $R_{n}^{\prime}=R_{n}-\Lambda_{n}$ and

$$
t_{n}^{i}:|z|=\frac{1}{2}-\left(\frac{1}{2^{n+1}}-a_{n}\right) \frac{(i-1)}{k}, \quad|\arg z|<\frac{\pi}{16}, \quad i=1,2, \cdots k+1 .
$$

Since $\operatorname{dist}\left(\partial \Gamma_{n}^{\prime}, \partial \mathfrak{D}\right)>0, \min _{z \in \partial \Gamma^{\prime} n} G\left(z, p_{0}, \mathfrak{D}\right)>0$. Now $G^{T_{n}}\left(z, p_{0}, \mathfrak{R}\right) \rightarrow G^{R^{\prime} n}(z$, $\left.p_{0}, \mathfrak{R}\right)$ uniformly on $\partial \Gamma_{n}^{\prime}$ as $k(n) \rightarrow \infty$. Hence there exists a number $k(n)$ such that

$$
\begin{equation*}
G^{T_{n}}\left(z, p_{0}, \mathfrak{R}\right)-G^{R_{n} n^{\prime}}\left(z, p_{0}, \mathfrak{R}\right) \leqq \frac{1}{5^{n}} G\left(z, p_{0}, \mathfrak{D}\right) \text { on } \partial \Gamma_{n}^{\prime} \tag{17}
\end{equation*}
$$

We suppose T_{n} is defined for every n. Put $\Omega=\Re-\sum_{n=1}^{\infty} R_{n}^{\prime}+\sum_{n=1}^{\infty}\left(R_{n}^{\prime}\right.$ $-T_{n}$. By $\Re \supset \Omega \supset \mathfrak{D}$ and by Lemma 4 and by (17) we have $\frac{1}{5^{n}} G(z$, $\left.p_{0}, \Omega\right) \geqq \frac{1}{5^{n}} G\left(z, p_{0}, \mathfrak{D}\right) \geqq G^{T_{n}}\left(z, p_{0}, \mathfrak{R}\right)-G^{R_{n}^{\prime}}\left(z, p_{0}, \mathfrak{H}\right) \geqq G^{T_{n}}\left(z, p_{0}, \Omega\right)-G^{R_{n}^{\prime}}(z$, $\left.p_{0}, \Omega\right)$ on $\partial \Gamma_{n}^{\prime}$. On the other hand, $\frac{1}{5^{n}} G\left(z, p_{0}, \Omega\right)=0=G^{T_{n}}\left(z, p_{0}, \Omega\right)$ $-G^{A^{\prime} n}\left(z, p_{0}, \Omega\right)$ on $\partial \Omega-\Gamma_{n}^{\prime}$. Hence by the maximum principle

$$
G^{\boldsymbol{T}_{n}}\left(z, p_{0}, \Omega\right)-G^{R_{n}^{\prime}}\left(z, p_{0}, \Omega\right) \leqq \frac{1}{5^{n}} G\left(z, p_{0}, \Omega\right) \text { in } \Omega-\Gamma_{n}^{\prime}
$$

Next by $T_{n} \subset \partial \Omega G^{T_{n}}\left(z, p_{0}, \Omega\right)=G^{\Sigma T_{n}}\left(z, p_{0}, \Omega\right)=G\left(z, p_{0}, \Omega\right)$ and $G^{\Sigma R_{n}^{\prime}}(z$, $\left.p_{0}, \Omega\right)=G\left(z, p_{0}, \Omega-\sum R_{n}^{\prime}\right)=G\left(z, p_{0}, \mathfrak{D}\right)$. Hence by Lemma $4, G\left(z, p_{0}, \Omega\right)$ $-G\left(z, p_{0}, \mathfrak{D}\right) \leqq \sum\left(G^{T_{n}}\left(z, p_{0}, \Omega\right)-G^{R_{n}^{\prime}}\left(z, p_{0}, \Omega\right)\right) \leqq \sum \frac{1}{5^{n}} G\left(z, p_{0}, \Omega\right) \quad$ in $\Omega-$ $\sum \Gamma_{n}^{\prime}$. Now $p_{n}^{i} \in \Omega-\sum \Gamma_{n}^{\prime}$ and we have $G\left(p_{n}^{i}, p_{0}, \Omega\right) \leqq \frac{5}{4} G\left(p_{n}^{i}, p_{0}, \mathfrak{D}\right)$. Hence ${ }_{\text {ex }}\left(\lim _{n} K\left(z, p_{n}^{i}, \mathfrak{D}\right)\right.$ (from \mathfrak{D} relative to $\left.\Omega\right)$) $<\infty$. Hence by Proposition 1 and by Lemma 8 we have

Proposion 2. There exist at least two K-Martin's points of Ω on $z=0$.

We show that there exists only one N-Martin's point of Ω on $z=0$. Let $\Omega^{\prime}=\Omega-D_{0}, D_{0}=E\left[z:\left|z+\frac{1}{2}\right|<\frac{1}{4}\right]$. Consider $N(z, p)$ of Ω^{\prime}. Let $U(z)$ be a harmonic function in a domain $G_{r}, G_{r}=E[z:|z|<r]$ such that $U(z)$ has minimal Dirichlet integral over $\Omega^{\prime} \cap G_{r}$. Then $U(z)=\lim U_{n}(z)$, where $U_{n}(z)$ is a harmonic function in $\Omega^{\prime} \cap G_{r} \cap C_{n}$ $\left(C_{n}=E\left[z:|z+1|<1-\frac{1}{n}\right]\right)$ such that $U_{n}(z)=U(z)$ on $\partial G_{r} \cap C_{n} \cap \Omega^{\prime}$ and $\frac{\partial}{\partial n} U_{n}(z)=0$ on $\left(\partial \Omega^{\prime}+\partial C_{n}\right) \cap G_{r}$. Hence by the maximum principle $\sup _{\partial G^{\prime} \cap \Omega^{\prime} \cap C_{n}} U_{n}(z) \geqq \sup _{G_{r} \cap \Omega^{\prime} \cap C_{n}} U_{n}(z) \geqq \inf _{G_{r} \cap \Omega^{\prime} \cap C_{n}} U_{n}(z) \geqq \inf _{\partial G_{r} \cap \Omega^{\prime} \cap C_{n}} U_{n}(z)$ and by letting $n \rightarrow \infty \sup _{\partial G \cap \cap \Omega^{\prime}} U(z) \geqq \sup _{G_{r} \cap \Omega^{\prime}} U(z) \geqq \inf _{G_{r} \cap \Omega^{\prime}} U(z) \geqq \inf _{\partial G_{r} \cap \Omega^{\prime}} U(z)$. Put $I_{r}=E[z:|z|=r]$ and $z=r e^{i \theta}$ and $L(z)=\int_{\Gamma r}\left|\frac{\partial}{\partial r} U(z)\right| r d \theta$. Then by

$$
\int_{E\left(r, r_{0}\right)} \frac{1}{r} d r \rightarrow \infty \text { as } r \rightarrow 0
$$

and $\int_{E\left(r, r_{0}\right)} \frac{L(r)}{r} d r \leqq \int_{B\left(r, r_{0}\right)}\left\{\left(\frac{\partial U(z)}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial}{\partial \theta} U(z)\right)^{2}\right\} d r d \theta \leqq D(U(z))<\infty$, we see that there exists a sequence $r_{1}>r_{2} \cdots$ such that $\sup _{\Gamma_{r_{i}}} U(z)$ $\inf _{\Gamma_{r_{i}}} U(z) \leqq \int_{\Gamma_{r_{i}}}\left|\frac{\partial}{\partial r} U(z)\right| r d \theta=L\left(r_{i}\right) \rightarrow 0$ as $r_{i} \rightarrow 0$, where $E\left(r, r_{0}\right)=I\left(r, r_{0}\right)$ $-\sum_{n=1}^{\infty} \Lambda_{n}$ and $I\left(r, r_{0}\right)$ is the interval $r_{0}>z>r$ on the real axis. Whence $\lim _{z \rightarrow 0} U(z)$ exists. Now $D(N(z, p))<\infty$ over $G_{r^{\prime}}: r^{\prime}<r\left(p_{n}^{i}\right)$ is finite for any p_{n}^{i} and $N(z, p)$ has minimal Dirichlet integral over $G_{r^{\prime}}$ and $\lim _{z \rightarrow 0} N\left(z, p_{n}^{i}\right) \quad$ exists. By $N\left(z, p_{n}^{i}\right)=N\left(p_{n}^{i}, z\right) \quad$ we have $\lim _{n} N\left(z, p_{n}^{1}\right)$ $=\lim _{n} N\left(z, p_{n}^{2}\right)$ for any z, whence $\lim _{n} N\left(z, p_{n}^{1}\right)=\lim _{n} N\left(z, p_{n}^{2}\right)$. Thus $\left\{p_{n}^{1}\right\}$
and $\left\{p_{n}^{2}\right\}$ determine the same N-Martin's point of Ω on $z=0$ and $K M . T$ $\prec N M . T$ and we have by Examples 3 and 4 the following

Theorem 4.b). KM.T $* N M . T$.
Example 5. Let $C=E[z:|z|<1]$ and $F_{n}=E\left[z: \frac{1}{2^{n}} \leqq z \leqq \frac{1}{2^{n}}+a_{n}\right]$ on the real axis. We suppose that $\sum_{n=1}^{\infty} F_{n}$ is so thinly distributed that $z=0$ may be an irregular point for the Dirichlet problem of $\Omega=C-\sum F_{n}$. Then $\varlimsup_{z \rightarrow 0} G\left(z, p_{0}, \Omega\right)=\delta>0$. Let $\left\{p_{n}\right\}$ be a sequence tending to $z=0$ such that $\frac{\lim }{n} G\left(p_{n}, p_{0}, \Omega\right) \geqq \frac{\delta}{2}$. Choose a subsequence $\left\{p_{n^{\prime}}^{1}\right\}$ of $\left\{p_{n}\right\}$ such that $G\left(z, p_{n^{\prime}}^{1}, \Omega\right)$ converges to a harmonic function (which is clearly non constant) denoted by $G\left(z,\left\{p_{n}^{1}\right\}, \Omega\right)$. Let $\gamma_{n^{\prime}}$ be a curve connecting $F_{n^{\prime}}$ with $p_{n^{\prime}}^{1}$. Then since ∂F_{n} is regular, $G\left(z, p_{0}\right.$, $\Omega)=0$ for $z \in F_{n}$. And we can find $p_{n^{\prime}}^{2}$ on $\gamma_{n^{\prime}}$ such that $\lim _{n^{\prime}} G\left(p_{n^{\prime}}^{2}, p_{0}\right.$, $\Omega)=\frac{\delta}{4}$. Choose a subsequence $\left\{p_{n^{\prime \prime}}^{2}\right\}$ of $\left\{p_{n^{\prime}}^{2}\right\}$ such that $G\left(z, p_{n^{\prime \prime}}^{2}, \Omega\right)$ converges to $G\left(z,\left\{p_{n^{\prime \prime}}^{2}\right\}, \Omega\right)$. Next choose a subsequence $\left\{p_{n^{\prime \prime \prime}}^{i}\right\}$ of $\left\{p_{n^{\prime \prime}}^{i}\right\}$ ($i=1,2$) such that $\left\{p_{n^{\prime \prime \prime}}^{i}\right\}$ tends to a boundary point p^{i} with respect to Green's metric. Then dist $\left(p^{1}, p^{2}\right)=\inf _{\Sigma} \int d\left|e^{-G\left(z, p_{0}, Q\right)-i h\left(z, p_{0}, Q\right)}\right|>e^{\delta / 2}$ $-e^{\delta / 4}>0$, whence $p^{1} \neq p^{2}$ with respect to Green's metric, where L is a curve connecting p^{1} with p^{2} and $h\left(z, p_{0}, \Omega\right)$ is the conjugate of $G\left(z, p_{0}, \Omega\right)$. On the other hand, ${ }_{e x} G\left(z,\left\{p_{n^{\prime \prime \prime}}^{i}\right\}, \Omega\right)$ (from Ω to C relative to $\left.v_{n}\right) \leqq G\left(z, p_{0}, C\right)<\infty: p_{0}=z=0 . \quad v_{n}=E[z:|z|<1 / n]$. Now there exists only one linearly independent positive harmonic function in $C-p_{0}$ vanishing on ∂C. Hence by (14) of Lemma 8 such functions $G\left(z,\left\{p_{n}^{1}\right\}, \Omega\right), G\left(z,\left\{p_{n}^{2}\right\}, \Omega\right) \cdots$ are linearly dependent. On the other hand, by $G\left(z,\left\{p_{n^{\prime \prime \prime}}^{i}\right\}, \Omega\right)>0 \lim _{n^{\prime \prime \prime}} K\left(z, p_{n^{\prime \prime \prime}}^{i}, \Omega\right)$ exists and is equal to a $G\left(z,\left\{p_{n^{\prime \prime \prime}}^{i}\right\}, \Omega\right)$. But $K\left(z,\left\{p_{n^{\prime \prime \prime}}^{i}\right\}, \Omega\right)=1$ at $z=p_{0}$, whence by the linearly dependency $K\left(z,\left\{p_{n^{\prime \prime \prime}}^{1}\right\}, \Omega\right)=K\left(z,\left\{p_{n^{\prime \prime \prime}}^{2}\right\}, \Omega\right)$. Hence $\left\{p_{n^{\prime \prime \prime}}^{1}\right\}$ and $\left\{p_{n^{\prime \prime \prime}}^{2}\right\}$ determine the same K-Martin's point relative to Ω. Thus KM.T $\nrightarrow G . T$.

Example 6. Let R_{1} be a unit circle $:|z|<1$ with slits $S_{n}: \operatorname{Im} z$ $=0, \frac{1}{2^{n}} \leqq R e z \leqq \frac{1}{2^{n}}+a_{n}$. Let R_{2} be the identical leaf to R_{1}. We choose a_{n} so small that $z=0$ may be an irregular point of the Dirichlet problem of $R_{i}^{\prime}=R_{i}-\sum_{n=1}^{\infty} S_{n}$. Connect R_{1}^{\prime} and R_{2}^{\prime} crosswise on $\sum S_{n}$. Then we have a Riemann surface $\Re=R_{1}+R_{2}$ of infinite genus. Since $z=0$ is irregular, we can find a sequence $\left\{p_{n}^{1}\right\}$ in R_{1}^{\prime} such that $0<G\left(z,\left\{p_{n}^{1}\right\}, R_{1}^{\prime}\right)=\lim G\left(z, p_{n}^{1}, R_{1}^{\prime}\right)$ and $\lim G\left(z, p_{n}^{1}, \mathfrak{R}\right)=G\left(z,\left\{p_{n}^{1}\right\}, \mathfrak{R}\right)$ exist and $G\left(z,\left\{p_{n}^{1}\right\}, R_{1}^{\prime}\right)=a K\left(z,\left\{p_{n}^{1}\right\}, R_{1}^{\prime}\right): 0<a<\infty$. Clearly $G\left(z,\left\{p_{n}^{1}\right\}, R_{1}^{\prime}\right)<G(z$, $\left.\left\{p_{n}^{1}\right\}, \mathfrak{F}\right)<\infty$. Whence ${ }_{e x}\left(K\left(z,\left\{p_{n}^{1}\right\}, R_{1}^{\prime}\right)\left(\right.\right.$ from R_{1}^{\prime} to $\left.\left.\mathfrak{R}\right)\right)<\infty$. Similarly
we can find $\left\{p_{n}^{2}\right\}$ in R_{2}^{\prime} such that ${ }_{e x}\left(K\left(z,\left\{p_{n}^{2}\right\}, R_{2}^{\prime}\right)\left(\right.\right.$ from R_{2}^{\prime} to $\left.\left.\Re\right)\right)<\infty$. Hence by $R_{1}^{\prime} \cap R_{2}^{\prime}=0$ and by (14) and by Lemma $8_{e x}\left(K\left(z,\left\{p_{n}^{1}\right\}, R_{1}^{\prime}\right)\right)$ and ${ }_{e x}\left(K\left(z,\left\{p_{n}^{2}\right\}, R_{2}^{\prime}\right)\right)$ are linearly independent. Thus there exists at least two K-Martin's point of \Re on $z=0$. Consider $G\left(z, p_{0}, \mathfrak{\Re}\right): p_{0}=1 / 2$. Then since p_{0} is a branch point, $G\left(z, p_{0}, \mathfrak{R}\right)=1 / 2 \log \left|\frac{1-\frac{z^{*}}{2}}{z^{*}-\frac{1}{2}}\right|: z^{*}$ is the projection of z and $G\left(z, p_{0}, \mathfrak{R}\right)$ is regular with respect to z^{*} in a neighbourhood of $z=0$. Hence $\int_{L} d\left|e^{-\sigma\left(z, p_{0}, R\right)-i h\left(z, p_{0}, \beta_{i}\right)}\right| \rightarrow 0$ as the length of a curve $L \rightarrow 0$. Hence $\left\{p_{n}^{1}\right\}$ and $\left\{p_{n}^{2}\right\}$ determine the same point with respect to Green's metric. Hence KM.T↔G.T. Thus by Examples 5 and 6 KM.T $* G . T$.

We show NM.T $\nVdash G . T$. In Example 5 suppose $\sum_{n=1}^{\infty} F_{n}$ is so thinly distributed on the real axis as $z=0$ is irregular and further $\int_{\sigma_{\Sigma P_{n}}} d \log r=\infty$ (in reality the irregularity of $z=0$ implies $\int_{\sigma_{\Sigma} P_{n}} d \log r$ $=\infty$), where $C \sum F_{n}$ means the complementary set of $\sum F_{n}$ of the segment: $\operatorname{Im} z=0,0<R e z<1$. Let $U(z)$ be a Dirichlet bounded and $U(z)$ has minimal Dirichlet integral in a neighbourhood $v_{r_{0}}=E[z:|z|$ $\left.<r_{0}\right]$ of $z=0$. Put $L(r)=\int_{\Gamma r}\left|\frac{\partial}{\partial n} U(z)\right| d s: \Gamma_{r}=E[z:|z|=r]$. Then there exists a sequence $\left\{r_{i}\right\}$ in $C \sum F_{n}$ such that $L\left(r_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$. Whence as in Example 4, $\lim N\left(z, p_{0}\right)$ exists, where $N\left(z, p_{0}\right)$ is an N Green's function of $C-\sum_{n=1}^{\infty} F-D_{0}$ and D_{0} is a compact set of $C-\sum_{n=1}^{\infty} F_{n}$. Hence there Exists only one N-Martin's point on $z=0$ and NM.T \nsucc G.T. We use example 6. Let R_{1}^{\prime} and R_{2}^{\prime} be the leaves of Example 6. Let $D=E\left[z:\left|z+\frac{1}{2}\right|<\frac{1}{4}\right]$ and put $R_{i}^{\prime}=R_{i}-D_{0}$ and $\Re^{\prime}=R_{1}^{\prime}+R_{2}^{\prime}$. Let $\tilde{\Re}^{\prime}$ be the mirror image of \Re^{\prime} with respect to $|z|=1$. Connect \Re^{\prime} and $\tilde{\Re}^{\prime}$ on $|z|=1$. Then we have a Riemann surface $\hat{\Re}$. Clearly $N\left(z, p, \Re^{\prime}\right)=G(z, p, \hat{\mathfrak{R}})+G(z, \tilde{p}, \hat{\mathfrak{R}})$, where \tilde{p} is the mirror image of p. Hence by the existence of linearly independent functions $G\left(z,\left\{p_{n}^{\prime}\right\}, \hat{\mathfrak{R}}\right)$, $G\left(z,\left\{p_{n}^{2}\right\}, \hat{\Re}\right)$ we see there exist at least two linearly independent functions $N\left(z,\left\{p_{n}^{1}\right\}, \Re^{\prime}\right)$ and $N\left(z,\left\{p_{n}^{2}\right\}, \Re^{\prime}\right)$. Thus there exist at least two N-Martin's point on $z=0$ and NM.TКG.T. Thus we have

Theorem 4. c). KM.T $\not * G . T$ and NM.T $\notin G . T$.

