97. On a Product of Summability Methods

By Kazuo Ishiguro
Department of Mathematics, Hokkaido University, Sapporo
(Comm. by K. Kunugi, M.J.A., Oct. 12, 1962)

1. The present note is a continuation of a previous paper by the author [3]. O. Szász [13, 14] discussed the following problem concerning the product of two summability methods for sequences: If a sequence $\left\{s_{n}\right\}$ is summable by a regular T_{1} method then is the T_{2} transform of $\left\{s_{n}\right\}$, where T_{2} is a regular sequence-to-sequence method, also summable by the T_{1} method to the same sum as before? In what follows we denote $T_{1} \cdot T_{2}$ as the iteration product of these two methods, that is the T_{1} transform of the T_{2} transform of a sequence. He answered this problem in the affirmative in the several cases. He also gave an example of two regular methods, where T_{1} does not imply $T_{1} \cdot T_{2}$. Here we denote "method A implies method B", when any sequence summable A is summable B to the same sum. T. Pati [5], C.T. Rajagopal [7], M. R. Parameswaran [6], M. S. Ramanujan [11, 12], D. Borwein [1] and the author [3] also discussed this problem. M. S. Ramanujan [11] proved the following

Theorem 1. For a bounded sequence the Abel method A implies the $A \cdot\left(H^{*}, \psi\right)$ method. Here we denote by $\left(H^{*}, \psi\right)$ the regular quasiHausdorff method. In the special case when the (H^{*}, ψ) method gives the circle method of summabrlity (γ, r), the Abel method implies the $A \cdot(\gamma, r)$ method irrespective of whether $\left\{s_{n}\right\}$ is bounded or not.

The latter part of this theorem was at first established by 0 . Szász [14]. See for the definition of the quasi-Hausdorff method of summability G. H. Hardy [2] and M. S. Ramanujan [8, 9, 10].

On the other hand M.S. Ramanujan [10] introduced a new method of summability $\left(S^{*}, \psi\right)$ by a modification of the quasi-Hausdorff method. The $\left(S^{*}, \psi\right)$ means of a sequence $\left\{s_{n}\right\}$ are defined by the transformation

$$
\begin{equation*}
s_{n}^{*}=\sum_{\nu=0}^{\infty}\binom{n+\nu}{\nu} s_{\nu} \int_{0}^{1}(1-t)^{\nu} t^{n+1} d \psi(t) \quad(n=0,1,2, \cdots), \tag{1}
\end{equation*}
$$

where $\psi(t)$ is a function of bounded variation in the closed interval $[0,1]$. This method is regular if, and only if,

$$
\begin{equation*}
\psi(1)=\psi(1-0) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{+0}^{1} d \psi(t)=1 . \quad(\text { See } \quad[10] .) \tag{3}
\end{equation*}
$$

In the special case when, for a given $\alpha(0<\alpha<1)$,

$$
\begin{aligned}
& \psi(t)=0 \text { for } \quad \\
&=1 \quad 0 \leq t<1-\alpha \\
& \text { for } \quad 1-\alpha \leq t \leq 1,
\end{aligned}
$$

we have the S_{α} method of W. Meyer-König [4] and P. Vermes [15]. Concerning the (S^{*}, ψ) method M.S. Ramanujan [12] proved further the following

Theorem 2. If $\left\{s_{n}\right\}$ satisfies the following condition: For every t in $0<t<1$, there exists a function $F(x)$ finite for every x in $0<x<1$ such that

$$
\frac{t}{1-x t} \sum_{\nu=0}^{\infty}\left|s_{\nu}\right|\left(\frac{1-t}{1-x t}\right)^{\nu} \leq F(x),(0<x<1) .
$$

Then the Abel method implies the $A \cdot\left(S^{*}, \psi\right)$ method, where the $\left(S^{*}, \psi\right)$ method is assumed to be regular.
D. Borwein [1] studied the logarithmic method L. When a sequence $\left\{s_{n}\right\}$ is given we define the L method as follows: If

$$
\frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}}{n+1} x^{n+1}
$$

tends to a finite limite s as $x \rightarrow 1$ in the open interval $(0,1)$, we say that $\left\{s_{n}\right\}$ is L-summable to s. It is well known that the Abel method implies the L method. (See G. H. Hardy [2].) Concerning this method D. Borwein [1] proved the following

Theorem 3. If (H, ψ) is a regular Hausdorff method, then the L method implies the $L \cdot(H, \psi)$ method.

See for the definition of the Hausdorff method of summability G. H. Hardy [2]. The author [3] proved the following

Theorem 4. If $\left(H^{*}, \psi\right)$ is a regular quasi-Hausdorff method which satisfies the condition

$$
\begin{equation*}
\int_{0}^{\sigma} \log t|d \psi(t)| \text { is finite for a positive } \sigma \tag{4}
\end{equation*}
$$

then the L method implies the $L \cdot\left(H^{*}, \psi\right)$ method for a bounded sequence. In the special case when the $\left(H^{*}, \psi\right)$ method gives the circle method, the L method implies the $L \cdot(\gamma, r)$ method irrespective of whether $\left\{s_{n}\right\}$ is bounded or not.

Here we prove the following
Theorem 5. If $\left(S^{*}, \psi\right)$ is a regular method which satisfies the condition (4), then the L method implies the $L \cdot\left(S^{*}, \psi\right)$ method for a bounded sequence.
2. Proof. For the proof we use the method of M. S. Ramanujan [12]. Since the $\left(S^{*}, \psi\right)$ transforms of $\left\{s_{n}\right\}$ are given by (1) we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{s_{n}^{*}}{n+1} x^{n+1}=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \sum_{\nu=0}^{\infty} \int_{0}^{1}\binom{n+\nu}{\nu}(1-t)^{\nu} t^{n+1} s_{\nu} d \psi(t) \tag{5}
\end{equation*}
$$

provided the right-hand member exists. To prove this existence we consider the right-hand member with s_{ν} replaced by $\left|s_{\nu}\right|$ and $\psi(t)$,
supposed to be monotonic increasing (as is permissible). The righthand member with these changes, is

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \sum_{\nu=0}^{\infty} \int_{0}^{1}\binom{n+\nu}{\nu}(1-t)^{\nu} t^{n+1}\left|s_{\nu}\right| d \psi(t) \\
&=\int_{0}^{1} \sum_{n=0}^{\infty} \sum_{\nu=0}^{\infty}\binom{n+\nu}{\nu}(1-t)^{\nu} t^{n+1} \frac{x^{n+1}}{n+1}\left|s_{\nu}\right| d \psi(t) \\
&=\int_{0}^{1} \sum_{\nu=0}^{\infty}(1-t)^{\nu}\left|s_{\nu}\right| t \sum_{n=0}^{\infty}\binom{n+\nu}{\nu} \frac{x^{n+1} t^{n}}{n+1} d \psi(t)
\end{aligned}
$$

every inversion of operations being justified by the fact that we have only positive integrands or terms. Since

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(n_{\nu}^{n+\nu}\right) \frac{x^{n+1} t^{n}}{n+1} & =\int_{0}^{x} \frac{d u}{(1-u t)^{\nu+1}} \\
& = \begin{cases}\frac{1}{t} \log \frac{1}{1-x t} & \text { for } \quad \nu=0 \\
\frac{1}{t \nu}\left\{\frac{1}{(1-x t)^{\nu}}-1\right\} & \text { for } \nu \geq 1\end{cases}
\end{aligned}
$$

the last integral is

$$
\int_{0}^{1}\left[\left|s_{0}\right| \log \frac{1}{1-x t}+\sum_{\nu=1}^{\infty}(1-t)^{\nu}\left|s_{\nu}\right| \frac{1}{\nu}\left\{\frac{1}{(1-x t)^{\nu}}-1\right\}\right] d \psi(t)
$$

Here we see easily

$$
\log \frac{1}{1-x t} \leq \log \frac{1}{1-x}
$$

and further from $\left|s_{\nu}\right| \leq M$ we see

$$
\sum_{\nu=1}^{\infty}(1-t)^{\nu}\left|s_{\nu}\right| \frac{1}{\nu}\left\{\frac{1}{(1-x t)^{\nu}}-1\right\} \leq M \log \frac{1}{1-x},
$$

for $0 \leq t \leq 1$ and $0<x<1$. Hence the last integral is finite for $0<x<1$ from (3). Therefore we get, from (5),

$$
\begin{align*}
\sum_{n=0}^{\infty} & \frac{s_{n}^{*}}{n+1} x^{n+1} \tag{6}\\
= & \int_{0}^{1}\left[s_{0} \log \frac{1}{1-x t}+\sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu}(1-t)^{\nu}\left\{\frac{1}{(1-x t)^{\nu}}-1\right\}\right] d \psi(t) \\
= & \int_{0}^{1} s_{0} \log \frac{1}{1-x t} d \psi(t)+\int_{0}^{1} \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu}\left(\frac{1-t}{1-x t}\right)^{\nu} d \psi(t)- \\
& -\int_{0}^{1} \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu}(1-t)^{\nu} d \psi(t) .
\end{align*}
$$

Substituting $x=1-\frac{1}{y}$, we have

$$
\begin{aligned}
& \frac{-1}{\log (1-x)} \int_{0}^{1} s_{0} \log \frac{1}{1-x t} d \psi(t) \\
& \quad=s_{0} \int_{0}^{1} \frac{\log y-\log (y-y t+t)}{\log y} d \psi(t)
\end{aligned}
$$

Since

$$
=s_{0} J, \text { say. }
$$

$$
\varlimsup_{y \rightarrow \infty}|J| \leq \varlimsup_{y \rightarrow \infty}\left\{1-\frac{\log (y-y \sigma+\sigma)}{\log y}\right\} \int_{0}^{\sigma}|d \psi(t)|+\int_{\sigma}^{1}|d \psi(t)|,
$$

we have

$$
\varlimsup_{y \rightarrow \infty}|J| \leq \int_{\sigma}^{1}|d \psi(t)|
$$

for $0<\sigma<1$. Since, by (2),

$$
\int_{\sigma}^{1}|d \psi(t)| \rightarrow 0 \quad \text { as } \quad \sigma \rightarrow 1
$$

in the open interval $(0,1)$, we have $\varlimsup_{y \rightarrow \infty}|J|=0$. Next we put

$$
f(x)=\sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} x^{\nu}=\sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu}\left(1-\frac{1}{y}\right)^{\nu}=g(y) .
$$

If $\left\{s_{n}\right\}$ is L-summable to s, then

$$
\lim _{y \rightarrow \infty} \frac{g(y)}{\log y}=s
$$

from the translativity of the L method. (See [1].) Since

$$
\begin{aligned}
& \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu}\left(\frac{1-t}{1-x t}\right)^{\nu}=\sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu}\left(1-\frac{t}{y-y t+t}\right)^{\nu} \\
& \quad=g\left(\frac{y-y t+t}{t}\right)=g\left(1+\frac{y(1-t)}{t}\right) \\
& \quad=s \log \left(1+\frac{y(1-t)}{t}\right)+o\left(\log \left(1+\frac{y(1-t)}{t}\right)\right), \text { as } y \rightarrow \infty,
\end{aligned}
$$

we have

$$
\begin{align*}
& \frac{-1}{\log (1-x)} \int_{0}^{1} \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu}\left(\frac{1-t}{1-x t}\right)^{\nu} d \psi(t) \tag{7}\\
& =s \int_{0}^{1} \frac{\log \left(1+\frac{y(1-t)}{t}\right)}{\log y} d \psi(t)+ \\
& \quad+o\left(\int_{0}^{1} \frac{\log \left(1+\frac{y(1-y)}{t}\right)}{\log y} d \psi(t)\right)
\end{align*}
$$

On the other hand from (3) and (4) we have

$$
\begin{aligned}
& \int_{0}^{1} \frac{\log \left(1+\frac{y(1-t)}{t}\right)}{\log y} d \psi(t) \\
& \quad=\int_{0}^{1} \frac{\log (t+y(1-t))}{\log y} d \psi(t)-\int_{0}^{1} \frac{\log t}{\log y} d \psi(t) \\
& \quad=1+o(1), \text { as } y \rightarrow \infty,
\end{aligned}
$$

similarly as the estimation of J. Hence from (7)

$$
\frac{-1}{\log (1-x)} \int_{0}^{1} \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu}\left(\frac{1-t}{1-x t}\right)^{\nu} d \psi(t) \rightarrow s
$$

as $x \rightarrow 1$ in the open interval $(0,1)$.
Finally we have

$$
\begin{aligned}
& \frac{-1}{\log (1-x)} \int_{0}^{1} \sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu}(1-t)^{\nu} d \psi(t) \\
& \quad=\frac{1}{\log y} \int_{0}^{1} f(1-t) d \psi(t)=K, \text { say. }
\end{aligned}
$$

Since $\left|s_{n}\right| \leq M$ or

$$
|f(1-t)| \leq M \sum_{\nu=1}^{\infty} \frac{(1-t)^{\nu}}{\nu}=-M \log t
$$

for $0<t \leq 1$, we have

$$
|K| \leq \frac{-M}{\log y} \int_{0}^{1} \log t|d \psi(t)|=o(1) \quad \text { as } y \rightarrow \infty
$$

from the condition (4).
Collecting above estimations

$$
\frac{-1}{\log (1-x)} \sum_{n=0}^{\infty} \frac{s_{n}^{*}}{n+1} x^{n+1}
$$

tends to s as $x \rightarrow 1$ in the open interval $(0,1)$, whence the proof is complete.
3. Remark. In the special case when, for a given $\alpha(0<\alpha<1)$,

$$
\begin{aligned}
\psi(t) & =0 \quad \text { for } \quad 0 \leq t<1-\alpha \\
& =1 \quad \text { for } \quad 1-\alpha \leq t \leq 1
\end{aligned}
$$

which satisfies all the conditions of our theorem, (5) and (6) become respectively

$$
\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \sum_{\nu=0}^{\infty}\binom{n+\nu}{\nu} \alpha^{\nu}(1-\alpha)^{n+1} s_{\nu}
$$

and

$$
s_{0} \log \frac{1}{1-x(1-\alpha)}+\sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} \alpha^{\nu}\left\{\frac{1}{(1-x(1-\alpha))^{\nu}}-1\right\} .
$$

Then we get the equality $\left(5^{\prime}\right)=\left(6^{\prime}\right)$ irrespective of whether $\left\{s_{n}\right\}$ is bounded or not, since (6^{\prime}) converges absolutely in $0 \leq x<1$. Therefore we have the following

Corollary. The L method implies the $L \cdot S_{\alpha}$ method for $0<\alpha<1$.

References

[1] D. Browein: A logarithmic method of summability, Jour. London Math. Soc., 33, 212-220 (1958).
[2] G. H. Hardy: Divergent Series, Oxford (1949).
[3] K. Ishiguro: On the product of some quasi-Hausdorff and logarithmic methods of summability, Proc. Japan Acad., 38, 318-322 (1962).
[4] Meyer-König: Untersuchungen über einige verwandte Limitierungsverfahren, Math. Z., 52, 257-304 (1949).
[5] T. Pati: Products of summability methods, Proc. Nat. Inst. Sci. India, 20, 348351 (1954).
[6] M. R. Parameswaran: Some product theorems in summability, Math. Z., 68, 19-26 (1957).
[7] C. T. Rajagopal: Theorems on the product of two summability methods with applications, Jour. Ind. Math. Soc. (New Ser.), 18, 89-105 (1954).
[8] M. S. Ramanujan: Series-to-series quasi-Hausdorff transformations, Jour. Ind. Math. Soc., (New Ser.), 17, 47-53 (1953).
[9] -: A note on the quasi-Hausdorff series-to-series transformations, Jour. London Math., Soc., 32, 27-32 (1957).
[10] -: On Hausdorff and quasi-Hausdorff methods of summability, Quart. Jour. Math., 8, 197-213 (1957).
[11] _-: Theorems on the product of quasi-Hausdorff and Abel transforms, Math. Z., 64, 442-447 (1956).
[12] -: On products of summability methods, Math. Z., 69, 423-428 (1958).
[13] O. Szász: On products of summability methods, Proc. Amer. Math. Soc., 3, 257-263 (1952).
[14] -: On the product of two summability methods, Ann. Soc. Polon. Math., 25, 75-84 (1952).
[15] P. Vermes: Series to series transformations and analytic continuation by matrix methods, Amer Jour. Math., 71, 541-562 (1949).

