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1. The present note is a continuation of a previous paper by
the author [3. O. Szsz [13, 14 discussed the following problem
concerning the product of two summability methods for sequences"

If a sequence [s} is summable by a regular T method then is the
T transform of {s}, where T. is a regular sequence-to-sequence
method, also summable by the T method to the same sum as be-
fore? In what follows we denote T. T. as the iteration product of
these two methods, that is the T transform of the T. transform of
a sequence. He answered this problem in the affirmative in the
several cases. He also gave an example of two regular methods,
where T does not imply T. T. Here we denote "method A implies
method B", when any sequence summable A is summable B to the
same sum. T. Pati [5, C.T. Rajagopal [7_, M.R. Parameswaran
[6, M. S. Ramanujan [11, 12], D. Borwein [1 and the author [3_ also
discussed this problem. M.S. Ramanujan [11 proved the following

Theorem 1. For a bounded sequence the Abel method A implies
the A. (H*, ) method. Here we denote by (H*, ) the regular quasi-
Hausdorff method. In the special case when the (H*, 4) method gives
the circle method of summab,lity (, r), the Abel method implies the
A.(y, r) method irrespective of whether {s] is bounded or not.

The latter part of this theorem was at first established by O.
Szsz [14. See for the definition of the quasi-Hausdorff method of
summability G.H. Hardy [2 and M.S. Ramanujan [8, 9, 10.

On the other hand M.S. Ramanujan [10 introduced a new me-
thod of summability (S*, ) by a modification of the quasi-Hausdorff
method. The (S*, ) means of a sequence [Sn} are defined by the
transformation

(1) *-(’) (1-t)tn*d,l(t) (-0,1,2,...),
’-’0

where (t) is a function of bounded variation in the closed interval
[0, 1. his method is regular if, and only if,
2 (1) =(1-- 0)

and

(3) d(t)-l. (See [10.)
/0

In the special case when, for a given a (0<a<l),
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()--0 for 0_t(l--a
--1 for 1--a_$_l,

we have the S method of W. Meyer-KSnig 4 and P. Vermes 15].
Concerning the (S*, ) method M.S. Ramanujan 12 proved further
the following

Theorem 2. If {s} satisfies the following condition: For every
in Ot(l, here eists a function F() finite for every in

0 x 1 such that
t (l--t)i-xtl_xts F(x), (0x 1).

Then the Abel method implies the A. (S*, ) method, where the (S*,
method is assumed to be regular.

D. Borwein [1 studied the logarithmic method L. When a
sequence [s} is given we define the L method as follows"

log(l--x)
tends to a finite limite s as xl in the open interval (0, 1), we say
that {s} is L-summable to s. It is well known that the Abel method
implies the L method. (See G. H. Hardy [2.) Concerning this me-
thod D. Borwein [1 proved the following

Theorem . If (H, ) is a regular Hausdorff method, then the
L method implies the L.(H, ) method.

See for the definition of the Hausdorff method of smmability
G.H. Hardy [2. The author [3 proved the following

Theorem 4. If (H*,) is a regular quasi-Hausdorff method
which satisfies the condition

() lo t lg(t) is finite for a positive ,
then the L method implies the L.(H*, ) method for a bounded
sequence. In the special case when the (H*, ) method gives the
circle method, the L method implies the L.(y, r) method irrespective
of whether [s} is bounded or not.

Here we prove the following

Theorem 5. If (S*, ) is a regular method which satisfies the
condition (4), then the L method implies the L.(S*, ) method for
a bounded sequence.

2. Proof. For the proof we use the method of M. S. Ramanujan
[12]. Since the (S*, ) transforms of {s} are given by (1)we have

:o n+ 1 =,-n+ i :o
")(l--t)" d(t)

provided the right-hand member exists. To prove this existenee we
eonsider the right-hand member with s. replaced by s. and +(t),
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supposed to be monotonic increasing (as is permissible). The right-
hand member with these changes, is

(L+ )(1 t)t/ s, Ida(t)
-’0

( t xn+
0 9(-t) a(t)

n+l

.o n+1 d(t)

every inversion of operations being justified by the fact that we have
only positive integrands or terms. Since

fN(,)x*t du
,0 n+l (1--ut)+

1 1 for ,-0lgl_xt

(1--t)
the last integral is

,otlog + E(-t)I, 1 1 -1 4(e).
=, (1--xt)

Here we see easily
1 1og

_,i
og,

and further rom [s[M we see

(1-t) 1-
for 0 NtN 1 and 0< < 1. Hence the las integral is finite for 0 < < 1
from (8). herefore we get, from (g),

(6)

f’[ 1 S(l_t) {. 1 -1};d(t)So log iLXt + , (-xt)

y --1 f ( )

Substituting m-l--, we have

--1 ft 1
log(l_x) sologd(t)

logy--log(y--yt+ t)d(t)so log y
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Since
So J, say.

lim [J[<lim 1 log (y--ya+a) Id(t)[--- - log y
we have

lira [JIE. Ida(t)[

for 0 < a< 1. Since, by (2),

f d4z t ->0 as 6--->1

in the open interval (0, 1), we have lim [J]-0.

f()-N -N - -().
=I =i

If {.} iB L-Bummb]e to , then

jim () =]o
from the trnB]tivit of the L method. (See

we have

(7)

Next we put

Since

=s log (1+ y(1--t))+o(log(l+ y(1--t))) as y--->o
t t

log (l--x) = ,
log(l+y(1-t))

=sf t d(t)+
log y

t d(t)+ o
log y

On the other hand from (3) and (4) we have

flog(l+ y(1--t))t
d(t)

logy

f log(t+y(1--t)) d(t)-- t d (t)
log y logy

1 +o(1), as y->o,
similarly as the estimation of J. Hence from (7)

--1 of__ s___z_ ( 1 --xt)lo (l-x) , 1-
d(t)s
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as x->l in the open interval (0, 1).
Finally we have

log(I--x)
l ff(1--t)d,(t)--K, say.

logy

Since s I_<M or

]f(1--t)]EM (1--t) --Mlog t
v=l 9

for 0< t_< 1, we have

--3/flog t ]d(t)]-o(1) as y-->]K]_<
logy

from the condition (4).
Collecting above estimations

--1 s* .xn+

tends to as 1 in he oen interval (0, 1), whence the roof is
eomlete.

3. Remark. In the seeial ease when, for a given (0 << 1),
(t)-0 for 0N<I--

=1 for l--tl
which satisfies all the conditions of our theorem, (g) and (6) become
reseetively

xn+l(5’) ,=0 n+ =(’$)a(1 a)+s
and

(6’) s lg
1 x(1 v (1-x(1-a))

Then we get the equality (5’)-(6’) irrespective of whether [s] is
bounded or not, since (6’) converges absolutely in 0_<x< 1. Therefore
we have the following

Corollary. The L method implies the L.S. method for 0 < a< 1.
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