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on Generalized Multiplication of Distributions

By Tadashige ISHIHARA and Hideo YAMAGATA
Department of Mathematics, Toyonaka, Osaka University

(Comm. by K. KUNUGI, M.J.A., Dec. 12, 1962)

1. Introduction. In the previous article [2 published under the

same title, we considered the equivalent classes c(T[r T), c(TIr. oo )
and the ranges of product Rc(TJr[ ). c(SIrl ),, Rc(TIrl )oc(S[rl ),.

In this article we investigate detail relations between the topo-
logies r, r. and the ranges R[c(TIr] ). c(S] r.l )_ ,,, Rr(T] r )o(SI r[ ),.
We also give here full explanation to our considerations which are
discussed in [1 about Theorem given by L. Schwartz. We add here
also some corrections to the errors found in the previous articles
[I and V2.

2. Notations and Definitions. We consider the set of all sequences
{9} of functions 9e(). In this set we introduce the following
relations"

1 {@}={} <== n--(gn for all n,
(2) {@}+/-{}={@+/-n},

and construct the linear space Q.
Let Q denote the subspace of all convergent sequences in r

topology (on (8)), where r is a topology which is finer than r, and
is compatible with the linear operations in (g).

Let O denote the set of all sequences which converge to zero
in r topology. Let Q denote the set of classes such that Q---Q/O

={(IrlT), ( ]r[
Let Q be the set of all convergent classes, i.e.

Q =-- Q/O- {c( ]r T)}.
We consider the set of all convergent (in r,,) sequences {n}, e (8).

In this set, we introduce the above relations (1), (2), and construct
the linear space Q’. Let Q’ denote the subspace of all convergent
sequences in r topology which is contained in Q’. Let Q’ be the set of

all classes; V’=Q’/O-{c(T[r[ ), (T[rl ooe)}, where (?(T[r] )
means o converge to T in (’), and converge to T in r. Let Q"
denote the set of all convergent classes of Q" i.e. Q’-Q’/O

--{c(T[r]T)}.
Let P be the natural mapping from Q to Q or Q" to Q’.
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Let c(TIrl ) be the element of Q;’, and let (SIrl be the element
of Q’.

Definition.
c(Tlr ).c(Slr.l )={{}; g,=r.ps, {’}ec(TI r[ ), {p}c(Zlr )},
R[c(Tlr ).c(Slrl )]=P{c(Tr ).c(S[rl )}.
R[c(T[r[ ).c(Slr ) is the set of all convergent classes in ra

topology.
The ordinary multiplication is defined between a e (8) and Te (’),

and is contained in our definition as follows;
ac(a[ga), Tc(T]’IT) and

Remark 1. We add the following two cases to Definition 2 in

( 1 nl(m) , n.(m) 4: namely {} {[lim r. ;;,.(]},s
2 ) n(m) , n(m)-- namely {}--{lim ,,c"}.r

Remark 2. We add "and is finer than v," after the word
in the 4th line p. 329 [1.

3. Range of product. Let {W(0)} denote the neighbourhoods
of zero in (’). Let r0 be the topology defined by the linear shift
of the following neighbourhoods of zero:

Y,(O) W(O)-{; sup]e-/<s, W(O)}.
Let be the topology defined by the linear shift of the follow-
ing neighbourhoods of zero [V,(O)U,(O)W(O)} in which U,(O)
=[; sup ]x[(e’}, where k is a fixed positive integer. When we
can take an arbitrary fixed positive number as k, we denote this
topology 0 in generalization.

Lemma 1. ro and o are compatible with the linear operations
in (8).

Proof. The mappings a, (,)+are continuous, because
aU:() U(a) and Un()+ U/(@)U(+). Hence these topologies
are compatible with the linear operations.

According to [1] we can construct the classes c(]ro ), c(]o ]).
Lemma 2. The elements of the converging class c(lro])are

the sequences [} such that lira n--O uniformly for x e, where

e is an arbitrary positive number.
Proof. According to the definition of to, {} is an uniformly

convergent sequence in ]x]>z. Hence for [x>s, (lira n)C. 0n the

other hand lira n-- in (’). Hence for x[>e lim --0 uniformly.

Lemma . The element of c(o) is contained in a certain

convergent class c(r0).
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Proof. If {} converge in o, then {} converge in to. Hence,
any {o} e (1o1) is contained in a certain convergent class (lro ).

We denote this class by (lro]). Since o is stronger than to,

Lemma 4. For {}ec(a[0[a), [x[ has an upper bound which
is independent from n.

It is easily seen from the definition of o.
Theorem 1. The elements of R[c(3[ 0 [3). c([ 0 ), are sequences

{,} such that ({}.}- C()(0)for (), where C are deter-

mined as follows;
(1) C is a finite number,
or (2) C is
or (3) C is determined in the meaning of (1) or (2), if we

select the suitable subsequences from the given sequence {n}"
Proof. Let’s decompose () to the following sum;
-{(ao+ax+(a x/2) + + (a_x-) /(2k--1) )}fl(x)+x(x),

where fl(x) () and satisfy two conditions (1) 0gfl(x)l and (2)
1 for x e(carrier of ),(x)- 0 for x CU(carrier of ),

where U(carrier of ) is a suitable neighbourhood of the carrier of
and is a function of the space ().

Let’s take two series {} e c([ 0 ), {)} c([ o [) and construct
a series {*).=)}. Then we obtain the following formula;

() x-=(l,, "}, {(ao+ax+ax/2+ +a_ /(2k--1 fl(x)+x(x)}}
2k--1

X (D= a<{:).=)}, x fl(x)/i}+({ , .x=)}, @(x)}.
g=0

Let M denote sup {x]; x e(carrier of (x))}.
For any ’, >0, there exists N>0 such that for n>Nthe inequality
x(".) <e’e/M is satisfied for xe">0.

Let B be a common upper bound of x).=)[ }. Then, for
any >0, there exists N>0 such that

xl </4 xl a /dB
</2+/2-- for n>N.

2k--1

Hence <{F).F=)}, }-- a<{).=)}, xfl(x)/il}
t=O

2k--1-- ()(0)<{)- =)],xfl(x)/i]}. <{*). ,(),, xfl(x)/i]} are determined

such that one of the three cases occurs.
Remark 3. We write the contents of (2) and (4)in Theorem 1,

in correction of Theorem 3 p. 336 in the previous article 2.
We correct similarly p. 334 Theorem 1 and p. 336 Theorem 2.
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Theorem 2. The elements of R[c(O o [)’(81 o 18.), are expressed
2k-I

as the formula C6’, where C are finite numbers.
t--O

Proof. It is evident from the conclusion of Theorem 2 and the

definition of R[c((o ) ( o
Example. Let’s construct the following two sequences {()(x)},

n for --1/2n-kl/n<x<l/2n--1/n,((x)- for x--1/2n and for x>l/2n,
(,(x) e () and 0

_
(x) _< n.

(in forl/2n_x<l/n
)(x)-- +(--1)b for O<_x<l/2n--1/n

for x< 1/n and for x> 1/n+ 1/n,
F)(x)() and O<_()(x)<_max(2n,]a/(-1)b]).

Then, lim )(x)- and lim (,)(x)-. But )(x).)(x) does not con-

verge.

Let’s consider similarly the convergent classes

c(1/X[o I1/x), (’[ro [’) and (c]’[0] ’) (k_>2).
Then, we can easily prove the following five lemmas by the definition
of the topologies ro and 0.

Lemma 5. The elements of c(1/X[Vo[1/x) are the sequences [}
such that lim]--1/x]-0 uniformly for ]xl>s where e is an arbi-

trary positive number.
Lemma 6. The elements of c(’ ro 8’) are the sequences {n} such

that lim --0 uniformly for [x[>e, where e is an arbitrary positive

number.

Lemma 7. The elements of (1/X o l/x) are contained in a certain

converging class c(1/X Vo I1/x), and the elements of (’1o ’) are con-

tained in a certain converging class

Lemma 8. For the element {} c(l[x o l/x), x has an upper
bound which is independent from n.

Lemma 9. For the element {}(’1o]’), xl has an upper
bound which is independent from n.

Theorem 3. The element of R[(1/X[o[1/x).c(]’o[),,
R[(’ o ’) (1/x1"o 1/x)u, and R[c(’ o ’).( o )u, are sequences

2k--1

{;n} such that ([}, }-- C’)(0)for (), where C are determined
i=0

as follows;
(1) C is a finite number,
or (2) C is -+-oo,
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or (3) C is determined in the meaning of (1) or (2), if we select
the suitable subsequence from the given sequence {}.

The proof is same as the proof of Theorem 2.

4. On impossibility of multiplication investigated by L. Schwartz.
L. Schwartz showed the following Theorem [10]" Let E be a vector
space on real numbers, one of whose subspace is the space F of all
continuous functions of one real variable. The multiplication which
satisfies the following conditions cannot exist.

(1) coincides with usual multiplication on F,
(2) leEwhere 1.e--e for any eeE,
(3) bilinear associative operation,
(4) -eE where -.--1,
(5) eE where x.-0, =0.
If we try to define the multiplication of improper function,

accepting strictly the meaning of multiplication in this theorem, then
we see that we cannot construct it consistently.

So, we modify the meaning of multiplication, as already discussed
in this article. We accept at first that the distribution is a class
c(TI r eQ’. Namely we interprete that the distribution is a class of
sequences which also depend on the topology r. Moreover at the
correspondence between T and (T r] ), we sometimes use the different
topologies for the same T. For example, if T is a multiplicant or
a multiplier, we use c(Tl ), and if T is a multiple, we use c(Tl’ ).

L. Schwartz also use this interpretation and define the multi-
plication. In fact, in multiplication he sometimes uses the function f
which corresponds to distribution T. For example, (1. T, }--(T, 1.}
=(T, }. On the other hand, in the following formula x.pfl/x--1,
he uses the equality by the meaning of (E/) topology and uses T.

According to our interpretation, the same element I has different

topologies in these two cases. Namely, 1 in the first case is c(l[r I1)
and l in the second case is

If we admit these modified meanings of multiplication, we may

be able to define consistently the multiplication of improper function.
In fact, the multiplication in page 331 [1 satisfies the conditions
(1), (2), (3), (4), and (5) in the above modified sense.

Remark 4. We want to correct the topology
used in (1), (2), (3) as .follows: "to is the discrete topology".

Now, we show that the condition (3) is satisfied in the following
form, too.

(a) The multiplication defined in this article is the bilinear opera-
tion in the following meaning: For arbitrary {}e[c(Tlrl ).(c(TIrI )
"+-(Tlrl ))} and {}e[c(Tlrl ).c(T.lr.l )}+{(Tlrl ).c(Tlrl )},
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{}=--[@} {modc(0[r[ ).(T.[r.[ and mod c(0[rl ).c(T[r[ )}.
Furthermore, for arbitrary {} e {((T [r +c(T [r )). c(T [r )}

and {,}[c(T[r ).c(T]r )}+[c(T[r[ ).c(T[r[ )}, {n}{} {mod
c(T]r[ ).c(0]r[ ) and modc(Tlr] )’c(0[rl )}.

(b) The multiplication in this artiele satisfies the condition
assoeiativity in the following meaning:
=c(Tll ).{c(Slv[ )’c(Qlrl )}-c(Tlv[ ).c(Slvl )’c(Qlr[ ). We can
diseuss similarly about eommutativity.
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