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15. On Absolute Summability Factors of Infinite Series
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Department of Mathematics, University of Jabalpur, India
(Comm. by Kinjird KUNUGI, M.J.A., Feb. 12, 1964)

1. Definitions and Notations. Let s, denote the m-th partial
sum of a given infinite series > a,. We write

1 &1
t,=— —8,,
L, v2=1 )
where L,=> lcf)log n, as n—>oo,
v=1y

We say that the series >) a, is absolutely summable (R, —1—>, or sum-
n

mable lR, —1—‘, if the sequence {t,} is of bounded variation,” that is,
n

the series >1|f,—%,.,| is convergent. It may be observed that this
method of summability is equivalent to the absolute summability
method defined by means of the auxiliary sequence
1 $lgw
logn »=1 v
known as the Riesz logarithmic mean of {s,}.?
A sequence {1,} is said to be convex® if
A2, =4*(2,)=>0, n=1,2,---,
where A*(2,)=4(d42,)=d2,— 42, ,
and A2, =d(2,)=2,—Aps1.
Let {4,} be a monotonic increasing sequence such that
A,—>00, as n—>oo,

We write
Afw) =AYw)= S a,,

and, for >0,
H0)= 3 (0—2,) @y =1 f “(0—2) 1 A,(0)dx.
ApSo A
For r>0, we write

R(w)=A%Yw)/o".
Sla, is said to be absolutely summable (R, 1, r), or summable

1) Symbolically {t,}cBYV.

2) This can be easily seen by virtue of Lemma 3 of Iyer’s paper [4], which states
that the sequence {m,,}s{<1+—é—+~ +7n.-ll-—1—) / log n} is of bounded variation, when
we note that w, is strictly positive for n>2.

3) Hardy [3], §4.16.

4) Zygmund [8], p. 58.
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|R, 2, 7|, =0, if Rj(w) is a function (of w) of bounded variation
over the infinite interval (k, ), where k is some finite positive
number.”

It has been pointed out by Prof. Bosanquet that summability

6>

| R, log n, 1| is equivalent to summability IR, 1 .
n

Writing

where 2¢,>0 for all n, and 4,= éy,-—mo,

v=1
we shall say that the series > a, is absolutely summable (R, 1),
or summable |R, y,|, if {t,}eBV.

2. Introduction. The following result is known.
Theorem A.” If {1,} is a convex sequence such that the series
S n'2, is convergent and the sequence {s,} is bounded, then the

8

series > a,4, log n is summable IR, 1
n

It may be remarked that Theorem A was used for proving a
certain result on the localization of summability |R,logn,1| of a
Lebesgue-Fourier series with factors.

The object of the present paper is to demonstrate an extension
of Theorem A.

3.1. We establish the following theorem.

Theorem. If s,=a,+---+a,, and

oo

(3.1.1) ”2=2 l sn_%”ZnHASDnI <o
(3.1.2) 2 ls—adltlie, < oo
and

(3.1.3) §18n~a1||¢n+1”d2n| < oo,

then the series Z”anzngo,, is summable | R, p,|.
n=1
3.2. Proof of the Theorem.

Writing T =3C,
y=1

5) Obrechkoff [5], [6].

6) Bosanquet [2].

7) Bhatt [1].

8) Bhatt states in his enunciation |R, log n, 1| in place of absolute Riesz logarithmic
summability on account of the equivalence of these two methods and the fact that the

latter is equivalent to the method IR,%;
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a.nd Rn='_1— é sy Tv;
An v=1
we have
1 n n41
Rn—Rru-l:_E# 2”“ v
An v=1 n+1
!‘ln-a-l Iun-o-lTn-vl
A An+1 2"1#” o An+1
—_ Hnsr A,4T, Hnia T,—T
A An+1 2—1 + An+1 ( ”"‘1)
—___Musr ”—IA C . —tn o
AnAn+l 2_ i An+1 m
—_——_ _im+l luna-l z AC
AnAn+1 ”2=1 vt
= Aﬂ;[l 21 »+129+190v+1/1v
nlps1 ¥=
N o X5 (= A0 A
/1/1 L 1( v+l a’l) (9+150v+1 )
nfln+1 WV
+(8n+l_a1)2n+1¢n+1/1ni|
—_— l"n+1 S — Z A A
/1/1 zl(sv+l al){ v+litvtl Por1
nflps+1 WV
_2v+190v+1#v+1+§0v+2Av+1A/2v+l}
+(sn+l—a1)2n+190n+1An:|'
Hence
3 o n—1
EZIRn_Rn+1‘ 322 —Aﬁ%21(8u+1_a1)2v+1/1»+14$0v+1
= n= nln+1 V5
o n—1
+ 22 #Zl(sv+l_al)zv+1¢v+1#n+l
n= nllp+er ¥
o n—1
+ z; A—'L‘Zf‘l—21(5'”1—%)60“2/1”142”1
n= nflnsl V7
+ 22 %—l—(sn+l_al)2n+l¢n+l
- n+1

I
8 &MSM \

22+23 +>, say.

n+l sv+ —a 2v+ Av+ A v+
A, EI( 1 DAv1d, 14 1'

= . A Zl(svu a)2, 14,140, 4]

n=1 An+1 1n+2 v=1

p

= SV (s — A Ay A0y, | Az
gl( 1 VA1, 140 1‘%/1””/17”2
= le( v+l a1)2v+1Av+lAgDv+1|
y= v+1
(since Z oz 1 , as Ad,~>co with n),

v 1n+1An+2 Av+1
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= ”z;é | sv_alll'zv”ASDul

(8.2.1) < oo,
by (3.1.1).

22 < Z #"*1 Z I(sv+l a1)2v+1¢v+lﬂv+ll
n=2 A /l”+1 v=1

— 2 Uiz Z '(s”_‘_l a1)1,+190,,+1#u+1|

n=1 An+1/1n+2 v=1

- E |(S,+1 al)zv+1¢v+1pv+l} Zy Zfﬁi:

= z_;l ! (sv+1_a1)lv+1¢»+1#v+1 |

=3l —allalle. ] L

Av+1

4,
(3.2.2) < oo,
by (3.1.2).
28 < Z Ens1 2 l(sv+1 a1)¢v+2Av+IA'2»+1I
4 An+1 v=1
= 2 Fase 2 |(sv+l a1)¢»+2/19+14'2v+1|
n=1 n+1/1n+2 v=1
DI [CHC ATV IHDS A—Fi—A-—
= Zl l( vil a1)§0v+2/19+142v+1|
= v+l
= g [8,—all@,.1][42,]
(8.2.3) < oo,
by (3.1.3).
Lastly,

Sh= 2 |s.—aulldlleal Lo

(3.2.4) < o0,
by (3.1.2).

Thus, collecting the inequalities (3.2.1), (3.2.2), (8.2.8), and (8.2.4),
we have

g an'—RnHl < oo,

that is, f}anzngon is summable |R, p,].
n=1

This completes the proof of our theorem.

We give here a direct corollary of our theorem, which is some-
what more general than Theorem A.

COROLLARY. If {1,} is monotonic non-increasing, that is, 42,>0,
and >I1n7'2, is convergent, and {s,} is bounded, then 3 a,i,logn is
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summable ‘R, l\
n

To prove this we need the following lemma, suggested by Dr.
Pati, which is more general in form than Lemma 3 of Pati [7].
LemMMA. If {2,} is monotonic non-increasing, and S)nm ', is

convergent, then f} log (n+1)42,< co.
1

Proof. First, we show that if 42,20 and > %n'2,< oo, then
i, log m=0(), as n—>oo,
Now, since 2, is monotonic non-increasing, we have

2, log m=o{zm<§; n‘>} =0<<"; n‘12n>:0(1),
1 1
as m—>oo,
Now following Pati,” we have

i log (n+1)44,=2,log 2— mzld{log (m4+1)}y . 1— 2,1 log (m+1)

1 =0(1), 1
since

4d{log (n+1)}=log (n+1)—log (n+2)=0{1/(n+1)},
and
2, log n=0(1),

as proved above.

The author acknowledges his gratitude to Dr. T. Pati, University
of Jabalpur, for his kind interest and advice in the preparation of
this paper.
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