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32. On Differentially Integral Elements

By Hajime NISHIMURA
Institute of Mathematics, Yoshida College, Kyoto University
(Comm. by Zyoiti SUETUNA, M.J.A., March 12, 1964)

1. Let R be a differential ring with a derivation 6, and P be
a differential subring of R. J. Brzezinski [1] has introduced the
following notions. An element x of R is called differentially integral
with respect to P if there exists a finitely generated P-submodule
of R containing all the derivatives: &x=z, ox, 0°x=35-6x, ---. When
R is moreover an integral domain, R is said to be differentially-
integrally closed if every element of the quotient field Q(R) of R
which is differentially integral with respect to R is contained in R.

If one wishes to go into the differential algebra of non-zero
characteristic, it will be found that these notions may not sufficiently
answer the purpose.” In a recent paper [38], K. Okugawa, taking up
a differential ring with Hasse’s higher differentiations, has developed
the Picard-Vessiot theory for linear homogeneous differential equa-
tions, which is a generalization of the work of E. Kolchin [2] to the
case of an arbitrary characteristic.

In this note, we consider the corresponding notion of the differ-
entially integral element concerning the differential ring in the latter
sense, and we generalize the condition which is given in [1], for a
unique factorization domain to be differentially-integrally closed. This
we discuss in a manner similar to that of [1].

2. The notation and terminology will be as in [3]. Let R be

a ring.? A sequence §={5,; v=0,1, 2, ---} of maps §,: R—R is called
a differentiation in R, if it satisfies
(D1) =2z, (D2) o,(x+y)=0,x+d,y, for all v,
(D3) 4,(x- y)— Z Bxac 3,9, for all v, (D4) 0:(0.x)=(%")0.. .2, for all 2, .
A ring R with the mutually commutative differentiations 8,={4;,,; v=0}
1<i=m) preasmgned in R is called a differential ring.* The set
O={01,0," * *Onp, 3 ¥ 20, -+, v, =0} is regarded as the domain of
dlﬂz'erentlal operators in R.

1) In the case of the characteristic >0, since (1/x)? is differentially integral with
respect to R for any x€R, we see at once that R is never differentially-integrally
closed except for the trivial case where R itself is a field.

2) When we speak of a ring in this note, we always suppose tacitly that it is a
commutative ring with unity.

3) In case of a characteristic zero, if R is an integral domain containing a field
then it is regarded as the usual differential ring, since 5@,»-——1—515 1 and 0;,: is the usual
derivation in R for 1<i<m. See [3], §1.
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Definition. Let P be a differential subring of R. An element
zeR is called differentially integral with respect to P if there exists
a finitely generated P-submodule of R containing 6-x for all 0€6.

The meaning of the above definition may be clearer in the special
case where P is noetherian. Let P be noetherian, then since finitely
generated P-modules satisfy the ascending chain condition, the chain

(x)C(x, 0P2)C (2, 6V, 0P2)PC - - -, °eO(t=1,2, --+)
must stop. Thus there exist a finite number of operators ¢, -« -, 8
such that
(1) oxe(x, 6Vx, -- -, 0V %) for all 6¢6.
It is readily seen, conversely, that if there exist 6, --., 8" for
which (1) holds, then x is differentially integral with respect to P.
By (1) we see that # can be said to satisfy (simultaneous) linear
homogeneous (partial) differential equations of finite type with co-
efficients in P, which is referred to in [3], §6. Thus we have

Theorem 1. If P is moetherian, then x is differentially integral
with respect to P if and only if x satisfies linear homogeneous
differential equations of finite type over P.

We denote by Cgr(P) the set of all the elements of R which are
differentially integral with respect to P, i.e. the closure of P in R.

Theorem 2. Cgr(P) is a differential subring of R, containing P.

Proof. Let z, y(cR) be differentially integral with respect to P
then there exist P-submodules M=(r,, ---, r,) and N=(s;, --+, s;) of
R such that fxeM and fyeN for all #¢6, respectively. Using (D2)
and (D3) repeatedly, we have 6(x+y)=0x+0y and 6(x-y)=>"0"x-0"y,”
respectively. Hence we see that 6(x+y) and 6(x-y) belong to the
finitely generated modules M+ N and (---, 7;,°s;, + « ), respectively.

Finally, let 6,, 8, be any two operators in 6. Using (D4) re-
peatedly, it can be verified that there exist an operator 4, and an
integer ¢ such that 6,(,x)=cf,x. Hence all derivatives of 6,x are
contained in M, which implies Cr(P) is stable under differential
operators. q.ed.

3. From now on we consider the case where R is an integral
domain, whose quotient field will be denoted by Q(R), the character-
istic p of Q(R) being arbitrary. The fact that the structure of the
differential field of Q(R) is induced uniquely by the given structure
of R is referred to in [3], Proposition 2.3.

Definition. R s said to be differentially-integrally closed if
Camy(R)=R.

4) P-module generated by z, y, - -+ is denoted by (%, y, - - ).

5) For 6=01,u; *+* Om, vy, let ord.0=(v, - -, vm), regarded as a vector over integers,
then the summation runs over all ¢, 8 such that ord.¢’+ord.¢” =ord.o.

6) ord.6;=ord.8;+ord.6;.
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Theorem 3. Assume that R is a differential domain containing
a field,” and assume further that in R the wunique factorization
theorem for elements holds true. Then R is differentially-integrally
closed if and only if for any irreducible element xeR there exists
0€0 such that 0x is mot divisible by x in R.

The proof will be preceded by the following lemma.

Lemma. Assume R to be an integral domain containing a field,
0={0,; v=0} to be a differentiation in R. Let xcR. In the case
where d,& is divisible by x for all v,

(I) 6,(1/x)-xeR  for all v.

In the case where there exists 2 such that dx 1s mot divisible by x,
let 2, be the smallest among such 2, then for all v

(I1, v) 0., (1/2)=[(—1)*(0,,2)" +x-r]/e*, reR,

(I11, v) 0.(1/x) - eR  for p<(v+1).

Proof. Operating 6, on both sides of x-(1/x)=1, we see by (D3)
that 1
(2) 0,(1/x) -x+§51(1/’x) - 0,_,2=0.

From this (I) is proved inductively with respect to v. In fact, in
that case 4,_,# is divisible by « and by the induction assumption
8,(1/x)-xe R for 0<A1<v—1.

As for (II), (III), it is noted that i=1 when p=0," and that
2 is a power of p when p>0. The latter is seen as follows. Let
p=cot+c,p+---+ec,p° be the p-adic expression of a positive integer
p, then by (D4) ot---d=7r-9, where r=pl/[(p})*---(ph)*]=0 (p).”
Therefore, if each of d, ---, d,.x is divisible by x, then 4,2 is also
divisible by x, which means that the smallest 2, for which 4, is not
divisible by « is a power of p.

We proceed in the following order: we show first (II, v) = (III, v)
and then (II,v), (II1, v—1), and (IIL,v) = (II, v+1).

(II, v)= (III, »). We may assume vi=pg<(v+1)2. Putting
p=vly+ec, 0=c<A, we shall prove this inductively with respect to
¢. When ¢=0 our assertion is evidently true, and therefore in
particular it is so when p=0 —— consequently 2,=1 by the above.
Thus we may assume p>0.

By (D4), 4,:0,,=(%")-d, and further (**4*°)=0 (p) since 4, is a
power of p and ¢<2,'” Therefore g, is decomposed into two oper-
ators: 0,=pd,+d,, where S8 is an integer.

Now, by (II, v) evidently 4,,(1/x)-2*"*e R. Operating 4, on this,
we have

7) i.e. R is either a Ritt algebra or a differential domain of non-zero characteristic.
8) See 3).

9) See [3], §1, p 297.

10) See also [3], §1, p 297.
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(8)  [odullfm]-es 20 Lo bul/)] 8 w™) €R.

By the induction assumption c’[)gy-&zo(l/x)]-x”“eR for 0=<c¢’<ec. By
the definition of 1, for 0<¢”"<c¢ du(x**?) is divisible by x**! since ¢
is not greater than 1,. Therefore it follows from (8) that [4,:d,;,
(1/x)]-2***e R, which was to be proved.

(11, v), (111, v—1), and (III, v) = (II, v+1). Let the characteristic
p be arbitrary. Substituting (v+1)4, for v in (2), we have
(4) Oornul/m)=—/2){ > 0,1/x)-d.}

#+/A’l‘=,§»o+1)lo

=—(1/w)£+ﬂ > 1)};3,4(1/90)‘5p'90+5»~zo(1/x)'5aox + > o(1/x)-o.)

/=(v+ pt+p=Cv+1)2g
< ve2p<p<(v+1)d0

The following relations (5), (6), and (7) are immediate consequences

of (III, v—1), (II, v), and (III, v) respectively. In (7) we also use the

fact that d,« is divisible by « for ¢’ <2,

(5) 0,(1/x)-dx=r.f’, 7r.cR, for pluva,.

(6) 0,:,(1/%) 0,06 =[(—1)*(8,,x)" '+ -s]/x**, seR.

(7) 0,(1/x)-dx=t, a*, t,eR, for vi,<p<(v+1)i, 0<p' <2,
Combining (4), (6), (6), and (7), we have d¢, 1y, (1/2)=[(—1)"*'(;,2)"+*
—x(Cr,+s+2>0t) 1/ %%, which was to be proved. q.e.d.

Proof of Theorem 3. First, we assume that there exists an
irreducible element xeR by which 6-x is divisible for every 6¢®O.
According to Lemma (I), 4;,(1/x)e(1/x)-R for all 4, v. From this it
follows immediately that 0(1/x)e(1/x)- R for all €O, as O is generated
by 6,,1<i<m, v=0). Therefore by definition 1/x is differentially
integral with respect to R. On the other hand, x being irreducible,
1/x is not contained in R. Thus we see that in this case R is never
differentially-integrally closed.

Next, we shall prove the converse, namely that if, in R, for any
irreducible = there exists 6 such that 6x is not divisible by x, then
R is differentially-integrally closed. If we assume the contrary, then
there would be «, ye R for which y/x is differentially integral with
respect to R, and y/x is not contained in R.

As (y/x)-z is also differentially integral with respect to R for
ze R (see Theorem 2), without loss of generality we can further-
more assume 2z is irreducible. Then by the above assumption for R
there exists 6¢® such that 6x is not divisible by 2. From this it
follows readily that there exist ¢, v such that §;,,« is not divisible
by x, as @ is generated by §;,(1<1=m, v=0). Now, fixing such an
1, let us write for simplicity 0;,=d,. Let 2, be, as in (II), (III) of
Lemma the smallest for which 4,x is not divisible by .

From the fact that y/x is differentially integral with respeect to
R it follows that there exists k<R such that k%0 and %k-6(y/x)cR
for all §e®, since all the 6(y/x) are contained in a finitely generated
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R-module. Hence, in particular, k-6,(y/x)e R for all v.

We shall show that k is divisible by «* for any integer v, which
will contradict the unique factorization theorem in R. As k-4, (y/x)
eR for all y,
>

2<vig

Using (II), (IIT) of Lemma here, we have

Ey-[(—1)(0,x) +x-r]/et*+k-u/x* ¢R, where r, ucR.
Since y and (9,%)" are both relatively prime to x, from this we can
prove inductively with respect to v that k is divisible by 2* for all v.

k-d,.,(1/x)-y+ k-5,(1/x)-0,x cR.
#t 2
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