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156. The Role of Mollifiers in S Matrix Theory

By Hideo YAMAGATA
(Comm. by Kinjir8 KUNUG, M.b.A., Nov. 12, 196)

1. Introduction. In order to describe S matrix in the form

S- T(exp ifg(x)L(x)dx)==0 fT(L(x). L(x). L(Xn))g(x)g(x)

..g(x,)dx...dx, a function g(x) is used. By using the discussions
in 4-6J, it can be shown that this function g(x) does not necessarily
play the role of testing functions but mollifiers. Namely the direct
product of the same g(x) contained in (D) cannot construct the dense
set in (D)(R)(D)(R)...(R)(D), where (D) is the space consisting of C
functions with compact carrier defined by L. Schwartz [2J. Even
in infinite direct product space constructed by (D) the same prob-
lem happens. From this it is obvious that the above description
of S matrix is very imcomplete. In 2 we will show this. This
result necessarily shows the incompleteness of the description of
causality condition, too. Namely our causality condition is effective
to only the S matrix described by the form S(g). Furthermore, it
is the limit of formulas showing a sort of causality condition which
is effective to non local Lagrangian. To describe the causality con-
dition directly, we must use the element of ranked space instead of
g(x) [_7"8. We will show these facts in 3.

2. The product of distributions in S matrix theory. After-
ward, we use the following notations.

Let T(u(x)u(y)) denote the product

u(x)u(y) for x>y
T(u(x)u(y))- -+-u(y)u(x) for x<y.

(For Bose operators, the sign + is used, and for Fermi operators
the sign- is used.) This product is called chronological product or
T-product.

Let T(u(x)(R)u(y)) denote the direct product
u(x)(R)u(y) forx>y

T(u(x)(R)u(y))-- +/-u(y)(R)u(x) for x<y.
(For Bose operators the sign + is used, and for Fermi operators

the sign is used.) This direct product is called chronological direct
product or T direct product.

Let (D) denote the space of C functions with compact carrier
which has the topology defined by L. Schwartz in 2J, I-IT.=(R)(D)
denote the infinite direct product of (D), and D denote the closure
of the linear aggregate of the elements in 1-IT=(R)(D) by means of



No. 9 Role of Mollifiers in S Matrix Theory 729

Tychonoff’s weak topology with respect to infinite direct product.
Since the concept of T direct product is used in the infinite direct
product of the Lagrangians L(x)(i-- 1, 2, ...), the concept of T direct
product need not use in the infinite direct product of testing functions.

Let D denote the closure of the linear aggregate of {1-I%(R)g(x)}
(for the same g(x)e.(D)(E)) by the topology in D. Here the descrip-
tion of S matrix by using D is also incomplete. But to show the
incompleteness of the description S(g), it does not matter to use D
contained in D.

Lemma 1. D is not contained in D densely.
Proof. Let’s show that the element g(R)g(R)g(R)...(g#g) in

D is not contained in D obtained by the topology in D. Namely,
choose the neighbourhoods V--g+V({s}, {2}, {k.})(0<s.<max
Ig- gl/2) for 1_<_i <= 3 and V (D) for i >= 4, and construct the neigh-
bourhood [IT=(R)V in D. Here, g is the i th component of g(R)
g(R)g(R).., and V({s}, [/2}, [k.}) is the neighbourhood in (D) defined
by L. Schwartz [2. Then (1-I7=(R) V) D--. Hence, this lemma
is proved.

Lemma 2. D is a locally convex linear topological space.
Proof. From its construction it is obvious that the space D is

a linear topological space. Hence, it is sufficient to show that the
topology in D is locally convex. The family of the neighbourhood
in I-IT=(R)(D) is {[IT=(R)V} where V--(D) except for finite i. Since
(D) is a local convex space, we can take the family of convex neigh-
bourhoods V which define the same topology in (D). Hence the
topology in D can be defined by the convex neighbourhoods I-IT=(R) V.
Then this lemma is proved.

Our purpose is to clarify the exact meaning of the calculas
used in the usual quantum field theory. In quantum field theory
the deeper consideration is not yet adopted to using cut off process,
taking various limits, using mollifiers and using testing functions,
etc. In the case to take limit after the cut off process, we feel as
if it is right and exact. But even in this case the difference be-
tween the use of the mollifier and the use of the testing functions
appears. Namely, in S(g), the use of the mollifier is still effective.
In the following we show this.

Let E denote a locally convex linear topological space consisting
of testing functions and F(#E) denote a closed subset of E with
induced topology.

Theorem 1. Each element of F’ corresponds to a class of E’.
Proof. If the domain of the functional element in E’ is re-

stricted to F, then this restricted element is always contained in F’.
On the other hand, the functional element in F’ can be always extended
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to the functional elements in E’, by using Hahn-Banach’s extension
theorem [3. Then this theorem is proved.

Suppose that the set of the sequences (of the elements in (D))
gr=[_{} has the property lim--i in D.

Theorem 2. If q is the subset of gr, then lim T({n})is not

so ambiguous as lim TVrrn({n} e f).
This theorem is very important. But it is evident. Then we omit

the proof of this theorem. From Lemmas 1-2, Theorems 2-3 can
be adopted to D and D, and it follows that our S matrix theory

describe the character of S(1)- T(exp i]-L(x)dx)cannot fully even

in the limit, because g(x) does not play the role of testing functions
but mollifiers [6. Namely from the above arguments we can see
the justice of the selection of the suitable conditional convergence
sequence in the multiplication of distributions.

3. Causality condition. Here we use the two domains G, G
having the relation such that all points of one of them (G) lie in
the past with respect to certain time instant , while all points of
the other sub-region (G.)lie in the future with respect to . We
denote this relation by G.>G. Suppose that the function g() is
represented as a sum of two functions g() g(x)+g(x) one of which
(g) differs from zero only in G, while the second (g.) differs from
zero only in G..

Definition 1. The causality condition is one such that S(g+g)=
S(g.)S(g) for

In this definition non local Lagrangians constructed by using
the mollifier g(x) can be seen. S matrix constructed by using this
non local Lagrangian satisfies a sort of causality condition for g and
g. whose carriers have the sufficiently large distance. Using this

non local causality, the local causality is defined. For the direct
definition of local causality we must use the element in ranked space.

In this paragraph one of our purpose is to obtain the necessary and
sufficient condition of causality in Definition 1. Suppose that using
the two functions g(x) and g(x) which is different from zero only
in G., g’(x) and g"(x) are constructed by the sums g’(x)=g(x)+g(x)
g"(x) =g(x) +g(x). Here g is a function defined in the beginning
of this paragraph.

Lemma 3. If and only if S(g-k g) S(g)S(g) for any g and
g, then S(g")S*(g’)--S(g’)S*(g) for any g, g, and g’.

Proof. From S(g+g.)=S(g)S(g), it follows that S(g-bg.)=
St(g)St(g.).

Hence, we obtain the relation
s( z(
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If the relation S(g+g2)#S(g2)S(g) holds good for some pair of
above functions gl and g2, then the relation
Z(g+g.)S(g +O)=S(g+g.)S(g) 1 Z(g)Z(g)Z(g) 1 --S(g)S(O)

is obtained. Consequently, from S(g")St(g’)=S(g)S(g), the relation
S(g+ g.) S(g.)S(g) is deduced.

If g’(y) and g"(y) are defined by the relations g’(y)=g(y) and
g"(y)--g(y)-g(y) for an infinitesimal variation 3g(y) which is different
from zero only for y0> t, then S(g") =S(g)+S(g) where S(g)

/ .% (1/n !) (nS/g(y)) g(y)’ dy. Then S(g") S(g’) S(g) S(g) +
S(g)St(g)= l+S(g)St(g), and according to S(g")S(g’)=S(g’)S(g)
it does not depend on the variation of the function g(x) such that

x < t < y0. Consequently S(g)S(g)--; .=1(1/n!)’S/g(y) g(y)nS(g)dy
yo>t

does not depend on the variation g(x). Hence we obtain the following

Lemma 4. If and only if S(g")St(g’)--S(g’)S?(g) for any func-
tions gl, g, and g/ (the same as one used in Lemma 1), then
/g(x)[(3S(g)/g(y))S(g)}=O is obtained for g(x) and g(y)which
have the property xEy (for these carriers). Here x.y means that
the points x and y are separated by a spacelike interval.

The necessity is easily seen by the above arguments. But the
sufficiency is not so evident. The necessary and sufficient condition
for S(g")St(g’)--S(g/)St(g) can be represented by the most usual form

/g(x) (S/g(y) St(g))g(y)dy-O for The equivalence be-any n.

tween this and the relation /g(x)(S(g)/g(y)S(g))=O (for t<y)
is shown in the form of the following Lemma 5 which can be proved
easily.

Lemma 5o If /g(x)(3S(g)/g(y)St(g))--O (for x<t<y) is satis-
fied for any g, then

j-3/3g(x) {(g(y) /g(y)) S. S(g)}gy-O (n- 1, 2, ...)
yo>t

is satisfied for any g(x), g(y) such that xty.
The inverse of this lemma is easily obtained by taking the various

g(y) as testing functions. Comparing with the ordinary Taylor ex-
pansion, the following lemma is deduced.

Lemma 5. If / /g(x){(g(y) /g(y)) S. S(g)}dy-O holds good
y0:>t

for any g(x)g(y) such that x<t<y, then

f /3g(x){(g(y)/g(y)),..(g(y)/g(y)) S.S(g)}dy=O

According to Lemmas 3-5, we obtain the following
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Theorem 3. If the relation /g(x) (S(g)/g(y) S*(g)) 0 (for
xty) holds good for any g, then only the relation S(g")St(g’)=
S(gt)St(g) holds good for any g, g, g’ used in Lemma 1. Namely
it follows that only the relation S(g+g)=S(g) S(g) holds good for
g, g defined in the beginning of this paragragh.

As it is seen in the argument of the beginning of this para-
graph, this causality condition is defined by a sort of non-local causality..
To define the local causality directly, let’s use the following elements
of ranked space consisting of Che elements in (D) [7. Namely, V(F,
; 0) is the set of the function g(x) p(x)+ r(x) (p(x) (D), r(x) (D))
satisfied the conditions

(A) r(x)-O in F (B) Ip(x)ldx<2 (C) <

where F[0, lJ. And V(F, ,; f)= {g(x); g(x)--f(x) V(F, ; 0), ]x)
(D)}. Suppose that we can select the sequence of neighbourhoods
{V(F, ,;L)} such that

( a ) V(F, ,; Z) V(F, ,; f)...,
(b) f(x)=lim f(x)
C ) f2n:f2n+l, 2n<2n 1"

Now let’s investigate the various meaning of T{f} for Te(D’). In
the definition of (D’), the topology in (D) by L. Schwartz different
from the above V(F, ,; f) is used. About these two topologies, the
various pairs are considerable. Here we do not comment on this.

In [8J, 5oa construct the A-integral representation of T(D’).
Namely, using an A-integrable function F, T is represented by

for (D).

Here [F=
t-- for x such that [Finn, and mes Ix; [Fn]--0(1/n).

By the selection’s method of the pair of sequences (re(l), n(1))
such that lim re(l)= and lim n(l)- , lim fi[F(x)f(x)dx can take

different values. To define the local causality condition directly
this character must be used. Namely, by using [f*)] (f*)(D)(E)
and lim f*)=), local causality condition can be defined by the relation

S([f)+f)])=S({f)l)S([.f)]) (for any considerable re(l), n(l)) directly.
If the carrier of the element of ranked space g and g are one point,
he local causality condition is defined directly in a sense by using
these g and g. But even this local causality condition can be adopted
to only the restricted description of S matrix S(g). Namely even
Lemma 6 cannot be effectively adopted except for S(g).
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