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1o Introduction. In the present paper, we shall consider an
integral of the Denjoy type whose indefinite integral is approxi-
mately continuous. H.W. Ellis [23 has introduced the GM-integral
descriptively. Defining our integral we use his method, which is
essentially based on the procedure introduced by S. Saks [33 and
W. L. C. Sargent [43. It will be proved that our integral is more
general than Burkill’s approximately continuous Perron integral 13.

2. A finite function f(x) is said to be AC on a set Eif to

each positive number , there exists a number >0 such that
,{f(b)--f(ak)}> --for all finite non-overlapping sequences of intervals {(a, b)} with

end points on E and such that ,(b--ak)< 8. There is a corresponding

definition AC on E. If the set E is the sum of a countable number
of sets E on each of which f(x) is AC then f(x) is termed ACG on

E. If the sets E are assumed to be closed, then f(x) is said to be

(ACG) on E. Similarly we can define ACG and (ACG) on E. A
function is said to be (ACG) on E if it is both (ACG) and (ACG) on E.

Lemma 1. If F(z) is AC and A.D F(x)>=O almost everywhere

on [a, b then F(x) is non-decreasing on [a, b.
Proof. Since F() is AC on [a, b], for a given >0 we can find

>0 such that
{F(b)--F(a1)}> --for all finite non-overlapping sequences of intervals {(a, b)} with

(b-a)<3.
If we put E={x: AD F(z)>=O} then [E]--b--a. For any xeE

there exists a positive sequence h such that
F(x+h)-- F(x) > , (k- 1, 2,

h
and h-0. Let M be the family of the sets of closed intervals
Ix, z+h3 (k-l, 2, ...) for all xeE, then E is covered by M in the
sense of Vitali. Hence we can select a finite sequence of non-over-
lapping intervals in M

such that
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k=l

or

lea, b-i U l-x, x]l< o.
k=l

Since F(x) is AC on [a, b] and total length of the sequence of closed

intervals
_a, x], [x, x], ..., [x, b]

is less than , we have

) {F(xO-F(xi_)}>-,
k=l

where xg-a, x+--b. 0n the other hand, it holds that
2 F(xi)-F(xO> --(x--xO (k= 1, 2, m).

Hence it follows from (1) and (2)
F(b)--F(a) --z--s(b--a),

which implies F(b) F(a).
Lemma 2. If F(x) is approximately continuous on [a, b and is

non-decreasing for axb then F(x) is non-decreasing on [a, b].
Proof. Let a a fl b. Then F(x) is non-decreasing on

Hence it is sufficient to prove that F(x) is non-decreasing in the
neighbourhood of points a and b. Suppose that there exists a point

x0 with F(a)> F(xo). Since F(x) is approximately continuous at a,
we can find a point a’ sufficiently near to a such that

[F(a)--F(a’)l F(a)--F(xo) (a a’ Xo).
Hence F(xo)F(a’) which leads to a contradiction. Similarly we
can prove that F(x) is non-decreasing in the neighbourhood of the
point b.

Lemma 3. Let F(x) be approximately continuous and (ACG) on

[a, b and let AD F(x)O almost everywhere on [a, bJ. If P is a
per]ct set on [a, b with F(x) non-decreasing on the complementary
intervals {(a, b0}, then there is an interval (l, m) contaning points
of P with F(x) non-decreasing on (l, m).

Proof. Since F(x) is (ACG) on [a, b, [a, b is the sum of a

countable number of closed sets E on each of which F(x) is AC.
We can write P=P.E, and therefore, by Baire’s cathegory theorem
([3], p. 54), there exists an interval (1, m) and a natural number k0
such that P.(1, m)P.E,. Hence F(x) is AC on P.(l, m).

If we put
F(x) F(x) on P. (t, m),

=F(a)+-bLa.. for xe [a, b,

then it is shown that F(x) is AC on (1, m). Since F(x) is approxi-

mately continuous and non-decreasing on axb, it follows from
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Lemma 2 that F(x) is non-decreasing on [a, b. Hence F(x) is,
by the definition, non-decreasing on [a, b.

Since P.(l, m) is measurable, almost all points of P.(1, m) are
points of density of P.(1, m). Therefore, by the assumption AD
F(x)O, we have AD F(x)>=O for almost all points of P.(1, m).
Hence AD F(x)>=O almost everywhere on (1, m). It follows from
Lemma 1 that F(x) is non-decreasing on (1, m), and therefore F(x)
is non-decreasing on P.(1, m).

Theorem 1. If F(x) is approximately continuous, (ACG) on _a, b.
and AD F(x)>=O a.e. then F(x) is non-decreasing on [a, b.

Proof. Let E be the set of points of [a, b throughout no
neighbourhoocl of which F(x) is non-decreasing. It is clear that E
is closed. If we assume that E has an isolated point Xo, then there
exists an interval (p, q) (p<x0 < q) which contains no points of E
except x0. Since F(x) is non-decreasing on (p, x0) and (x0, q), it
follows from Lemma 2 that F(x) is non-decreasing on [p, x0 and
Ix0, q. Hence F(x) is so on [p, q which leads to a contradiction.
Therefore E is perfect or empty.

Suppose that E is not empty. Let {(a, b)} be the sequence of
complementary intervals of the perfect set E. Then F(x) is non-
decreasing on (a, b). It follows from the assumptions and Lemma
3 that there exists an interval (1, m) containing points of E such
that F(x) is non-decreasing on (1, m). This contradicts the definition
of E, which proves the theorem.

:. Let f(x) be a function defined on [a, b and suppose there
exists a function F(x) such that

F(x) is approximately continuous on [a, b,
(ii) F(x) is (ACG) on [_a, b,
(iii) AD F(x)=f(x) a.e.,

then f(x)is said to be integrable on [a, b in the approximately
continuous Denjoy sense or AD-integrable. We then say that the
function F(x) is an indefinite AD-integral of f(x). Its increment

F(b)--F(a) is called definite AD-integral of f(x) on [a, b and is

denoted by (AD)ff(t)dt.
It follows from Theorem I that indefinite AD-integral of f(x)

is uniquely determined except an additive constant.
We state some elementary properties which may be proved

directly from the definition of the AD-integral. (i) If f(x) is AD-
integrable on [a, b and f(x)=g(x)a.e., then g(x) is also AD-inte-

grable and

(AD)ff(t)dt- (AD)fg(t)dt.
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(ii) If f(x) and g(x) are both AD-integrable on [a, b], then af()+
g() is AD-integrable and

(AD)f(f/g)dt-a(AD)ff(t)dt+(AD)fg(t)dt.
Next we shall show that the AD-integral is more general than

Burkill’s approximately continuous Perron integral (AP-integral).
Theorem 2. If f(x) is AP-integrable on [a, b] then f(x) is also

AD-integrable and

(AD)ff(tldt--(APlff(t)dt.
Proof. If we put

F()=(AP)ff(t)dt
then it is known ([lJ, p. 276) that F(x)is approximately continuous
on [a, b and AD F(x)--f(x) a.e.

Since f(x)is AP-integrable, there exists a sequence of upper
functions {U(x)} and a sequence of lower functions {L(x)} such that

lim U(b)- lim L(b)- F(b).
The functions U(x)--F(x) and F(x)--L(x) are non-decreasing
p. 273), so that we have, for x[a, b,
1 ) lim U(x)- lim L(x)= F(x).

Since AD U(x)> A-- L(x) < + and since U(x)L(x)
is approximately continuous, it follows Ridder’s theorem (5, p. 153,

footnote) that U(x) L(x) is (ACG) ()tCG) on [a, bJ. Hence the

interval a, bJ is expressible as the sum of a countable number of
closed sets E, a, b-[JE, such that any U is AC on any E and

at the same time any L is AC on any E.
Next we shall show that F(x) is AC on E. For this purpose

we shall prove that F(x) is both AC and AC on E.
Suppose that F(x) is not AC on E. Then there exists an 0

such that for any small 0 we can find non-overlapping intervals
(a, b) with end points on E satisfying _(b--a)( but
2 -,{F(b)--F(a)]<:

Since we can find a natural number p, by (1), such that

U,(x) F(x) <-,
and since U(x)--F(x) is non-decreasing on [a, b we have
3 ) _{U(b)- U(a)}--{F(b)-F(a)}

(U(b)-F(b))-- (U(a)-F(a))

<= U(b) F(b) < --.
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It follows from (2) and (3) that

2{ Up(b)- Up(a)} <,{F(b)-F(a)} -+-
2

2
This contradicts the fact that U(x) is AC on E, and therefore F(x)
is AC on E.

Similarly we can prove that F(x) is AC on E. Thus F() is
AC on each closed set E, and also (ACG) on a, b. Since F() is
approximately continuous and AD F(x)--f() a.e. it follows that f(x)
is AD-integrable on a, b and that

(AD)/Of(t)dt--(Ap)ff(t)dt.
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