153. An Integral of the Denjoy Type

Yôto KUBOTA

Department of Mathematics, Hokkaido Gakugei University (Comm. by Kinjirô KUNUGI, M.J.A., Nov. 12, 1964)

1. Introduction. In the present paper, we shall consider an integral of the Denjoy type whose indefinite integral is approximately continuous. H. W. Ellis [2] has introduced the GM-integral descriptively. Defining our integral we use his method, which is essentially based on the procedure introduced by S. Saks [3] and W. L. C. Sargent [4]. It will be proved that our integral is more general than Burkill's approximately continuous Perron integral [1].

2. A finite function f(x) is said to be \underline{AC} on a set E if to each positive number ε , there exists a number $\delta > 0$ such that

$$\sum \{f(b_k) - f(a_k)\} > -\varepsilon$$

for all finite non-overlapping sequences of intervals $\{(a_k, b_k)\}$ with end points on E and such that $\sum (b_k - a_k) < \delta$. There is a corresponding definition \overline{AC} on E. If the set E is the sum of a countable number of sets E_k on each of which f(x) is \underline{AC} then f(x) is termed \underline{ACG} on E. If the sets E_k are assumed to be closed, then f(x) is said to be (\underline{ACG}) on E. Similarly we can define \overline{ACG} and (\overline{ACG}) on E. A function is said to be (ACG) on E if it is both (ACG) and (\overline{ACG}) on E.

Lemma 1. If F(x) is <u>AC</u> and AD $F(x) \ge 0$ almost everywhere on [a, b] then F(x) is non-decreasing on [a, b].

Proof. Since F(x) is <u>AC</u> on [a, b], for a given $\varepsilon > 0$ we can find $\delta > 0$ such that

$$\sum \{F(b_k) - F(a_k)\} > -\varepsilon$$

for all finite non-overlapping sequences of intervals $\{(a_k, b_k)\}$ with $\sum (b_k - a_k) < \delta$.

If we put $E = \{x: AD \ F(x) \ge 0\}$ then |E| = b - a. For any $x \in E$ there exists a positive sequence h_k such that

$$\frac{F(x+h_k)-F(x)}{h_k} > -\varepsilon, \ (k=1, 2, \cdots)$$

and $h_k \rightarrow 0$. Let M be the family of the sets of closed intervals $[x, x+h_k]$ $(k=1, 2, \cdots)$ for all $x \in E$, then E is covered by M in the sense of Vitali. Hence we can select a finite sequence of non-over-lapping intervals in M

 $[x_1, x_1'], [x_2, x_2'], \cdots, [x_m, x_m']$

such that

Y. KUBOTA

714

$$|E - \bigcup_{k=1}^{m} [x_k, x'_k]| < \delta$$

or

$$|[a, b] - \bigcup_{k=1}^{m} [x_k, x'_k]| < \delta.$$

Since F(x) is <u>AC</u> on [a, b] and total length of the sequence of closed intervals

$$[a, x_1], [x'_1, x_2], \cdots, [x'_m, b]$$

is less than δ , we have

 $\begin{array}{ll} (1) & \sum\limits_{k=1}^{m+1} \{F(x_k) - F(x'_{k-1})\} > -\varepsilon, \\ \text{where } x'_0 = a, \; x_{m+1} = b. \quad \text{On the other hand, it holds that} \\ (2) & F(x'_k) - F(x_k) > -\varepsilon(x'_k - x_k) \quad (k = 1, 2, \cdots m). \\ \text{Hence it follows from (1) and (2)} \\ & F(b) - F(a) > -\varepsilon - \varepsilon(b-a), \end{array}$

which implies $F(b) \ge F(a)$.

Lemma 2. If F(x) is approximately continuous on [a, b] and is non-decreasing for a < x < b then F(x) is non-decreasing on [a, b].

Proof. Let $a < \alpha < \beta < b$. Then F(x) is non-decreasing on $[\alpha, \beta]$. Hence it is sufficient to prove that F(x) is non-decreasing in the neighbourhood of points a and b. Suppose that there exists a point x_0 with $F(a) > F(x_0)$. Since F(x) is approximately continuous at a, we can find a point a' sufficiently near to a such that

 $|F(a)-F(a')| < F(a)-F(x_0) \quad (a < a' < x_0).$

Hence $F(x_0) < F(a')$ which leads to a contradiction. Similarly we can prove that F(x) is non-decreasing in the neighbourhood of the point b.

Lemma 3. Let F(x) be approximately continuous and (ACG) on [a, b] and let AD $F(x) \ge 0$ almost everywhere on [a, b]. If P is a perfect set on [a, b] with F(x) non-decreasing on the complementary intervals $\{(a_k, b_k)\}$, then there is an interval (l, m) containng points of P with F(x) non-decreasing on (l, m).

Proof. Since F(x) is (\underline{ACG}) on [a, b], [a, b] is the sum of a countable number of closed sets E_k on each of which F(x) is \underline{AC} . We can write $P = \sum P \cdot E_k$, and therefore, by Baire's cathegory theorem ([3], p. 54), there exists an interval (l, m) and a natural number k_0 such that $P \cdot (l, m) \subset P \cdot E_{k_0}$. Hence F(x) is \underline{AC} on $P \cdot (l, m)$.

If we put

$$F_1(x) = F(x) \quad \text{on } P \cdot (l, m),$$

= $F(a_k) + \frac{x - a_k}{b_k - a_k} \{F(b_k) - F(a_k)\} \text{ for } x \in [a_k, b_k],$

then it is shown that $F_1(x)$ is <u>AC</u> on (l, m). Since F(x) is approximately continuous and non-decreasing on $a_k < x < b_k$, it follows from

Lemma 2 that F(x) is non-decreasing on $[a_k, b_k]$. Hence $F_1(x)$ is, by the definition, non-decreasing on $[a_k, b_k]$.

Since $P \cdot (l, m)$ is measurable, almost all points of $P \cdot (l, m)$ are points of density of $P \cdot (l, m)$. Therefore, by the assumption AD $F(x) \ge 0$, we have $AD \ F_1(x) \ge 0$ for almost all points of $P \cdot (l, m)$. Hence $AD \ F_1(x) \ge 0$ almost everywhere on (l, m). It follows from Lemma 1 that $F_1(x)$ is non-decreasing on (l, m), and therefore F(x)is non-decreasing on $P \cdot (l, m)$.

Theorem 1. If F(x) is approximately continuous, (\underline{ACG}) on [a, b]and AD $F(x) \ge 0$ a.e. then F(x) is non-decreasing on [a, b].

Proof. Let E be the set of points of [a, b] throughout no neighbourhood of which F(x) is non-decreasing. It is clear that Eis closed. If we assume that E has an isolated point x_0 , then there exists an interval (p, q) $(p < x_0 < q)$ which contains no points of Eexcept x_0 . Since F(x) is non-decreasing on (p, x_0) and (x_0, q) , it follows from Lemma 2 that F(x) is non-decreasing on $[p, x_0]$ and $[x_0, q]$. Hence F(x) is so on [p, q] which leads to a contradiction. Therefore E is perfect or empty.

Suppose that E is not empty. Let $\{(a_k, b_k)\}$ be the sequence of complementary intervals of the perfect set E. Then F(x) is non-decreasing on (a_k, b_k) . It follows from the assumptions and Lemma 3 that there exists an interval (l, m) containing points of E such that F(x) is non-decreasing on (l, m). This contradicts the definition of E, which proves the theorem.

3. Let f(x) be a function defined on [a, b] and suppose there exists a function F(x) such that

(i) F(x) is approximately continuous on [a, b],

(ii) F(x) is (ACG) on [a, b],

(iii) AD F(x)=f(x) a.e.,

then f(x) is said to be integrable on [a, b] in the approximately continuous Denjoy sense or *AD*-integrable. We then say that the function F(x) is an indefinite *AD*-integral of f(x). Its increment F(b)-F(a) is called definite *AD*-integral of f(x) on [a, b] and is denoted by $(AD) \int_{a}^{b} f(t) dt$.

It follows from Theorem 1 that indefinite AD-integral of f(x) is uniquely determined except an additive constant.

We state some elementary properties which may be proved directly from the definition of the *AD*-integral. (i) If f(x) is *AD*integrable on [a, b] and f(x)=g(x) a.e., then g(x) is also *AD*-integrable and

$$(AD)\int_{a}^{b} f(t)dt = (AD)\int_{a}^{b} g(t)dt.$$

Y. KUBOTA

[Vol. 40,

(ii) If f(x) and g(x) are both AD-integrable on [a, b], then $\alpha f(x) + \beta g(x)$ is AD-integrable and

$$(AD)\int_{a}^{b}(\alpha f+\beta g)dt=\alpha (AD)\int_{a}^{b}f(t)dt+\beta (AD)\int_{a}^{b}g(t)dt.$$

Next we shall show that the *AD*-integral is more general than Burkill's approximately continuous Perron integral (*AP*-integral).

Theorem 2. If f(x) is AP-integrable on [a, b] then f(x) is also AD-integrable and

$$(AD)\int_{a}^{b}f(t)dt = (AP)\int_{a}^{b}f(t)dt.$$

Proof. If we put

$$F(x) = (AP) \int_{a}^{x} f(t) dt$$

then it is known ([1], p. 276) that F(x) is approximately continuous on [a, b] and $AD \ F(x) = f(x)$ a.e.

Since f(x) is AP-integrable, there exists a sequence of upper functions $\{U_k(x)\}$ and a sequence of lower functions $\{L_k(x)\}$ such that $\lim_{k \to \infty} U_k(b) = \lim_{k \to \infty} L_k(b) = F(b).$

The functions $U_k(x) - F(x)$ and $F(x) - L_k(x)$ are non-decreasing ([1], p. 273), so that we have, for $x \in [a, b]$,

 $\begin{array}{ccc} (\ 1\) & \lim_{k \to \infty} U_k(x) = \lim_{k \to \infty} L_k(x) = F(x). \\ & \text{Since } \underline{AD} \ U_k(x) > - \infty [\overline{AD} \ L_k(x) < + \infty] \ \text{ and } \ \text{since } \ U_k(x) [L_k(x)] \end{array}$

Since $\underline{AD} \ U_k(x) > -\infty [AD \ L_k(x) < +\infty]$ and since $U_k(x)[L_k(x)]$ is approximately continuous, it follows Ridder's theorem ([5], p. 153, footnote) that $U_k(x) \ [L_k(x)]$ is $(\underline{ACG}) \ [(\overline{ACG})]$ on [a, b]. Hence the interval [a, b] is expressible as the sum of a countable number of closed sets E_k , $[a, b] = \bigcup E_k$, such that any U_k is \underline{AC} on any E_k and at the same time any L_k is AC on any E_k .

Next we shall show that F(x) is AC on E_k . For this purpose we shall prove that F(x) is both AC and \overline{AC} on E_k .

Suppose that F(x) is not <u>AC</u> on E_k . Then there exists an $\varepsilon > 0$ such that for any small $\delta > 0$ we can find non-overlapping intervals (a_{ν}, b_{ν}) with end points on E_k satisfying $\sum (b_{\nu} - a_{\nu}) < \delta$ but (2) $\sum \{F(b_{\nu}) - F(a_{\nu})\} \leq -\varepsilon.$

Since we can find a natural number p, by (1), such that

$$U_p(x)-F(x)<\frac{\varepsilon}{2}$$

and since $U_p(x) - F(x)$ is non-decreasing on [a, b] we have (3) $\sum \{U_p(b_\nu) - U_p(a_\nu)\} - \sum \{F(b_\nu) - F(a_\nu)\}$ $= \sum [(U_p(b_\nu) - F(b_\nu)) - (U_p(a_\nu) - F(a_\nu))]$ $\leq U_p(b) - F(b) < \frac{\varepsilon}{2}.$

716

Integral of Denjoy Type

It follows from (2) and (3) that

$$\sum \{U_p(b_
u) - U_p(a_
u)\} < \sum \{F(b_
u) - F(a_
u)\} + rac{arepsilon}{2}$$
 $\leq -rac{arepsilon}{2}.$

This contradicts the fact that $U_p(x)$ is <u>AC</u> on E_k , and therefore F(x) is <u>AC</u> on E_k .

Similarly we can prove that F(x) is \overline{AC} on E_k . Thus F(x) is AC on each closed set E_k , and also (ACG) on [a, b]. Since F(x) is approximately continuous and $AD \ F(x)=f(x)$ a.e. it follows that f(x) is AD-integrable on [a, b] and that

$$(AD)\int_{a}^{b} f(t)dt = (AP)\int_{a}^{b} f(t)dt.$$

References

- J. C. Burkill: The approximately continuous Perron integral. Math. Zeit., 34, 270-278 (1931).
- [2] H. W. Ellis: Mean continuous integrals. Canadian Jour. Math., 1, 113-124 (1949).
- [3] S. Saks: Theory of the Integral. Warsaw (1937).
- [4] W. L. C. Sargent: A descriptive definition of Cesàro-Perron integrals. Proc. London Math. Soc., 47, 212-247 (1941).
- [5] J. Ridder: Ueber die gegenseitigen Beziehungen vershieder approximativ stetiger Denjoy-Perron-Integrale. Fund. Math., 22, 136-162 (1934).