A Note on Riemann's Period Relation 150.

By Kunihiko MATSUI

(Comm. by Kinjirô KUNUGI, M.J.A., Nov. 12, 1964)

1. Let W be a Riemann surface of infinite genus and \Im the ideal boundary of W. First we consider the following classes of dividing cycles on W.

DEFINITION 1. A dividing cycle C on W belongs to the class \mathfrak{D}_h of dividing cycles of order at most h when, for h > 1, C can be written as $C = \sum_{k=1}^{K} \sigma_k$ with some $K \leq h$ where σ_k is a closed curve, and for any $i \leq K \sigma_1 \cdots \sigma_{i-1}, \sigma_{i+1} \cdots \sigma_K$ are homologously independent mod \Im . For h=1 \mathbb{D}_1 is the class of connected dividing curves.

DEFINITION 2. A dividing cycle on W belongs to the class \mathfrak{D}'_h $(\subset \mathbb{D}_{h})$ of dividing cycles of order h, when it is written as K=h in Def. 1, *i.e.* $\mathfrak{D}_{h} = \mathfrak{D}_{h} - \mathfrak{D}_{h-1}$.

DEFINITION 3. An exhaustion of W by regular regions (F_n) belongs to the class \mathcal{E}_{h} of semi canonical exhaustions of at most order h, when it satisfies the following conditions:

(A) (i) It is an exhaustion in Noshiro's sense, $(cf. \lceil 6 \rceil, p. 50).^{*}$ (ii) Denoting canonical partition Q of the set of the contours of F_n (cf. [3]) by $Q(\partial F_n) = \sum_{i=1}^{m(n)} \Gamma_n^i$, $(\Gamma_n^i \in \mathfrak{D}_h, \Gamma_n^i) = \sum_{k=1}^{K(n,i)} \sigma_{nk}^i$, and σ_{nk}^i is a closed contour) there exist at least one Γ_n^i such that $\Gamma_n^i \in \mathfrak{D}_h^{\prime}$.

(iii) $\Gamma_n^i \sim \sum \Gamma_{n+1}^{ij} (\Gamma_n^i, \Gamma_{n+1}^{ij} \in \mathfrak{D}_h)$ being inner and outer boundary of a component F_n^i of $F_{n+1} - \overline{F}_n$, there is only one component of $F_{n+2} - \overline{F}_{n+1}$ which is adjoined to F_n^i along each Γ_{n+1}^{ij} .

2. By using Lemma 5 in [2], slit method in [7], and Noshiro's graph in [6], we can prove easily the following

LEMMA 1. For $h \ge 1$, $\mathcal{E}_h \neq \phi$.

Let D_{nk}^{i} be an annulus which satisfies the conditions:

(B) (i) D_{nk}^{i} includes σ_{nk}^{i} and $\overline{D_{nk}^{i}}$ is a closed annulus contained in $F_{n+1} - \overline{F_{n-1}}$.

(ii) $\overline{D_{nk}^i} \cap \overline{D_{m\beta}^a} = \phi$ if $n \neq m$ or $i \neq \alpha$ or $k \neq \beta$. We put $D_n^i = \sum_{k=1}^{K(n,i)} D_{nk}^i$, $D_n = \sum_{i=1}^{m(n)} D_n^i$, $\partial D_n = \beta_n - \alpha_n$. Let M_{nk}^i , M_n^i , and M_n be the moduli of D_{nk}^i , D_n^i , and D_n respectively. We consider a harmonic function u_n in D_n which vanishes on α_n and is equal to M_n on β_n , and the conjugate v_n of u_n satisfies $\int_s dv_n = 2\pi$. Putting u + iv

[[]p] means the p-th paper in References which are shown at the end of this paper.

K. MATSUI

[Vol. 40,

 $= u_n + iv_n + \sum_{j=1}^{n-1} M_j \text{ in each } D_n, \text{ we can map } D = \sum_{n=1}^{\infty} D_n \text{ by } u + iv \text{ onto a}$ strip domain $0 < u < R = \sum_{n=1}^{\infty} M_n, 0 < v < 2\pi \text{ (cf. [4])}. \text{ For } \sum_{j=1}^{n-1} M_j < r \leq \sum_{j=1}^n M_j,$ we denote the level curve u = r by $\Gamma_r = \sum_{i=1}^{m(n)} \Gamma_r^i \ (\Gamma_r^i \in \mathfrak{D}_h)$ and put

$$L_{i}(r) = \left(\int_{\Gamma_{r}^{i}} |\omega_{1}| + |\omega_{2}|\right)^{2}, \quad L(r) = \sum_{i=1}^{m(n)} L_{i}(r),$$

where $\omega_1, \omega_2 \in \Gamma_h(W)$. Then we can obtain the following lemma by the same way as Lemma 1 in [4] was established.

LEMMA 2. If $\sum_{n=1}^{\infty} \min_{i} \min_{k} M_{nk}^{i}$ is divergent, there exists a sequence $\{\gamma_{n}\}$ of level curves $u = r_{n}$ tending to \Im such that $\lim_{n \to \infty} L(r_{n}) = 0$.

REMARK. If we choose a suitable subsequence of $\{\gamma_n\}$ we can assume that $(F'_{nj}|\partial F'_{nj} = \gamma_{nj})$ belongs to \mathcal{E}_n .

DEFINITION 4. Such an exhaustion as mentioned above is called an exhaustion associated with (F_n) and ω_1 , ω_2 .

3. We suppose $(F_n) \in \mathcal{C}_h$ and put $F_{n+2} - F_n = \sum_{i=1}^{m(n)} E_n^i$ and $F_{n+1} - \overline{F}_n$ $= \sum_{i=1}^{m(n)} F_n^i$. Next we are going to construct some family of curves on each component E_n^i and F_n^i . Hereafter we put $E_n^i = E$, $F_n^i = F$ and

$$Q'(\partial F) = \sum_{j=1}^{N} \Gamma^{j} - \alpha, \quad \Gamma^{j} = \sum_{\nu=1}^{K_{j}} \sigma_{\nu}^{j} \quad (\alpha, \Gamma^{j} \in \mathfrak{D}_{h}, K_{j} \leq h).$$
(3.1)

We fix a point P_{ν}^{j} on σ_{ν}^{j} and connect P_{ν}^{j} and $P_{\nu+1}^{j}$ by two analytic curves $C_{\nu}^{\prime j}, C_{\nu}^{\prime \prime j}, j=1, \dots, \nu=1, \dots, K_{j}-1$, which satisfy the following conditions (cf. condition (B)):

(C) (i) $C_{\nu}^{\prime j}$ is in $F - (\sum_{k \neq \nu, \nu+1} \overline{D}_{k}^{j} \cap \overline{F})$, and $C_{\nu}^{\prime \prime j}$ is in $E - F - \sum_{k \neq \nu, \nu+1} \overline{D}_{k}^{j} \cap (E - \overline{F})$.

(ii) $C_{\nu}^{\prime j} + C_{\nu}^{\prime \prime j} = C_{\nu}^{j}$ is a closed analytic curve with the orientation from P_{ν}^{j} to $P_{\nu+1}^{j}$ in F.

(iii) $C^{j}_{\nu} \cap C^{\alpha}_{\beta} = \phi$, for $\alpha \neq j$ or $\beta \neq \nu$.

We cut E along C_{ν}^{j} (for fixed j and ν), and denote by G the cut surface and by \tilde{C}_{ν}^{j} the new boundary that corresponds to the left side of C_{ν}^{j} with respect to its orientation, and by $\tilde{C}_{\nu}^{\prime j}$ the other side. Let u_{ν}^{j} be a harmonic function on G which vanishes on \tilde{C}_{ν}^{j} , is equal to 1 on $\tilde{C}_{\nu}^{\prime j}$, and normal derivative $\frac{\partial u_{\nu}^{j}}{\partial n} = 0$ on other boundaries, then we can get (cf. [3])

LEMMA 3.
$$\int_{\widetilde{C}_{\nu}^{j}} du_{\nu}^{*j} = \int_{u_{\nu}^{j}=\rho} du_{\nu}^{*j} = \lambda_{G}(\widetilde{C}_{\nu}^{j}, \widetilde{C}_{\nu}^{\prime j}) = \lambda_{E}(C_{\nu}^{j}),$$

where du_{ν}^{*j} is a conjugate harmonic differential of du_{ν}^{j} , $(\tilde{C}_{\nu}^{j}, \tilde{C}_{\nu}^{\prime j})$ a family of curves that divide \tilde{C}_{ν}^{j} from $\tilde{C}_{\nu}^{\prime j}$ on G, (C_{ν}^{j}) a family of curves that are homologous to C_{ν}^{j} in E, and $\lambda_{g}(\tilde{C}_{\nu}^{j}, \tilde{C}_{\nu}^{\prime j})$ is the extremal length of the family $(\tilde{C}_{\nu}^{j}, \tilde{C}_{\nu}^{\prime j})$ on G.

Riemann's Period Relation

No. 9]

With these preparations we consider the integral of $|\omega_1|$, $|\omega_2|$ along the curve $C_{\nu}^{j}(\rho)|u_{\nu}^{j}=\rho$, where $\omega_1, \omega_2 \in \Gamma_{\lambda}(W)$. Since $u_{\nu}^{j}+iu_{\nu}^{*j}$ is considered as a uniformizer on \overline{G} , we can put $\omega_k = a_k du_{\nu}^{j} + b_k du_{\nu}^{*j}$.

Then we get from Lemma 3 by the Schwarz's inequality

$$(l_{\nu}^{j}(\rho))^{2} = \left(\int_{C_{\nu}^{j}(\rho)} |\omega_{1}| + |\omega_{2}|\right)^{2} \leq 2\lambda_{E}(C_{\nu}^{j}) \int_{C_{\nu}^{j}(\rho)} (|b_{1}|^{2} + |b_{2}|^{2}) du_{\nu}^{*j}.$$

Hence if $\lambda_{E}(C_{\nu}^{j}) \leq A$ for $j=1, \dots N, \ \nu=1, \dots K_{j}-1$, we get
 $\int_{0}^{1} \sum_{j=1}^{N} \sum_{\nu=1}^{K_{j}-1} (l_{\nu}^{j}(\rho))^{2} d\rho = \int_{0}^{1} M'(\rho) d\rho \leq 2ANh(||\omega_{1}||_{E}^{2} + ||\omega_{2}||_{E}^{2}).$ (3.2)

We denote $A, N, M'(\rho)$ with respect to a component E_n^i by A_n^i , N_n^i , and $M_n'^i(\rho)$. If $A_n^i < A_n$, $N_n^i < N_n$ for all i, we get

$$\int_{0}^{1} \sum_{i=1}^{m(n)} M_n'^i(\rho) d\rho = \int_{0}^{1} M_n'(\rho) d\rho \leq 2A_n N_n h(||\omega_1||_{F_{n+2}-\bar{F}_n}^2 + ||\omega_2||_{F_{n+2}-\bar{F}_n}^2).$$
(3.3)

DEFINITION 5. Above mentioned curve $C^{j}_{\nu}(\rho)$ is called a ρ -cycle in E, whose orientation is coherent to that of C^{j}_{ν} . (C^{j}_{ν}) is called a C-cycle family in E.

Let (W_{μ}) be an exhaustion associated with (F_{3n+1}) and ω_1, ω_2 , then we have the following statements:

(H) For each μ there corresponds an integer n_{μ} uniquely such that each component of ∂W_{μ} is homologous to a corresponding component of $\partial F_{3n\mu+1}$, and when, for simplicity, we put $F_{3n\mu} = F'_{3\mu}$, $F_{3n\mu+1} = F'_{3\mu+1}$, $F_{3n\mu+2} = F'_{3\mu+2}$ we get $F'_{3\mu} \subset W_{\mu} \subset F'_{3\mu+2}$, $F'_{3\mu-1} \subset F'_{3\mu}$ (cf. Defs. 3 and 4).

(J) If $\overline{\lim} A_n N_n < \text{constant } K$, for large μ we get from (3.3)

$$\int_{0}^{1} \sum_{i=1}^{m(3\mu)} M_{3\mu}^{\prime i}(\rho) d\rho = \int_{0}^{1} M_{\mu}^{\prime}(\rho) d\rho \leq 4Kh(||\omega_{1}||_{F_{\delta\mu+2}^{\prime}-\bar{F}_{\delta\mu}^{\prime}}^{2} + ||\omega_{2}||_{F_{\delta\mu+2}^{\prime}-\bar{F}_{\delta\mu}^{\prime}}^{2}),$$

where $m(3\mu) = m(3n_{\mu}).$

Hence we get

$$\lim_{\mu \to \infty} \int_{0}^{1} M'_{\mu}(\rho) d\rho = 0, \qquad (3.4)$$

so there is a subsequence $\{\mu_k\}$ such that for almost everywhere on [0, 1] (cf. [8])

$$\lim_{\mu_{k}} M'_{\mu_{k}}(\rho) = 0.$$
 (3.5)

We will make a new exhaustion from (W_{μ}) which will be called the special canonical exhaustion associated with (F_{3n+1}) and $\omega_1, \omega_2 \in \Gamma_h(W)$.

Let (W_{μ}) be an exhaustion which satisfies (3.5), then for fixed μ we can choose a positive number δ_{μ} such that for all values of ρ $(0 < \rho < \delta_{\mu})$ each ρ -cycle $C_{\nu}^{j}(\rho)$ in each component $E = E_{\mu}^{i}$ of $F'_{3\mu+2} - \overline{F}'_{3\mu}$ is disjoint with ∂E , $\overline{D_{k}^{i}} g \neq j$ or $k \neq \nu$, $\nu+1$ and $C_{\beta}^{\alpha}(\rho) \alpha \neq j$ or $\beta \neq \nu$ (cf. (B), (C)). Therefore for a fixed μ and ρ_{μ} $(0 < \rho_{\mu} < \delta_{\mu})$, $C_{\nu}^{j}(\rho_{\mu}) \cap F$ includes a connected simple curve $S_{\nu}^{j}(\rho_{\mu})$ which satisfies $S_{\nu}^{j}(\rho_{\mu}) \cap \sigma_{\nu}^{\prime j} \neq \phi$ and $S_{\nu}^{j}(\rho_{\mu}) \cap \sigma_{\nu+1}^{\prime j} \neq \phi$, where $F = F_{\mu}^{i}$ is a component of $W_{\mu} - \overline{F}'_{3\mu}$ such K. MATSUI

[Vol. 40,

that $E \cap F \neq \phi$, and $Q'(\partial F) = \sum_{\nu=1}^{N} \Gamma'^{j} - \alpha$, $\Gamma'^{j} = \sum_{\nu=1}^{K_{j}} \sigma'^{j}_{\nu}$ (cf. (3.1)).

DEFINITION 6. $S^{j}_{\nu}(\rho_{\mu})$ is called a ρ_{μ} -half cycle in F with respect to E.

From our construction $S^{j}_{\nu}(\rho_{\mu})$ has following properties:

(P) $S^{j}_{\nu}(\rho_{\mu})$ does not intersect each other, $\nu = 1, 2, \dots, K_{j} - 1, j = 1, 2, \dots, N$. (Q) Cutting F along $S^{j}_{\nu}(\rho_{\mu}), \nu = 1, \dots, K_{j} - 1, j = 1, \dots, N$, and denoting the cut surface by G'', we get $Q'(\partial G'') = \sum \beta' - \alpha$, where $\alpha \in \mathfrak{D}_{h}$ and $\beta' \in \mathfrak{D}_{1}$ is a connected piecewise analytic curve with a finite number of corners.

(**R**)
$$M(\rho_{\mu}) = \sum_{j}^{N} \sum_{\nu=1}^{Kj-1} \left(\int_{S_{\nu}^{j}(\rho_{\mu})} |\omega_{1}| + |\omega_{2}| \right)^{2} \leq 4h^{2}M'(\rho_{\mu}).$$

Denoting $M(\rho_{\mu})$ with respect to F^{i}_{μ} by $M^{i}_{\mu}(\rho_{\mu})$, we get

$$M_{\mu}(
ho_{\mu}) = \sum_{i=1}^{m(3\mu)} M_{\mu}^{i}(
ho_{\mu}) \leq 4h^{2}M_{\mu}'(
ho_{\mu}) \qquad ({
m cf.} \ (3.5)).$$

Therefore by the diagonal method

$$\lim M_{\mu}(\rho_{\mu}) = 0. \tag{3.6}$$

We collect the results in the following Lemma 4.

LEMMA 4. Let W be an open Riemann surface of infinite genus and (F_n) be an exhaustion which belongs to \mathcal{E}_h , and for each n we put

$$N_{n}^{i} < N_{n}, where \quad Q(\partial F_{n}) = \sum_{i=1}^{(m)n} \Gamma_{n}^{i}, \quad Q(\partial F_{n+1}) = \sum_{i=1}^{m(n)} \sum_{j=1}^{N_{n}^{i}} \Gamma_{n+1}^{ij} \\ \Gamma_{n}^{i} \sim \sum \Gamma_{n+1}^{ij} \in \mathfrak{D}_{n} \quad absolutely \end{cases}$$

$$(3.7)$$

If we assume that

(i) $\sum \min \min M_{nk}^i$ is divergent.

(ii) The extremal length of C-cycles in each component of $F_{n+2} - \overline{F_n}$ are less than A_n , and $\overline{\lim} A_n N_n$ is finite.

Then we have the following conclusions:

(1) There exists a sequence of the level curves $\{\gamma_{\mu}|u=r_{\mu}\}$ tending to \Im such that $\lim_{\mu\to\infty} L(r_{\mu})=0$, and the exhaustion $(W_{\mu}|\partial W_{\mu}=\gamma_{\mu}\}$ is associated with $(F_{3n+1})\in \mathcal{E}_{h}$ and $\omega_{1}, \omega_{2}\in \Gamma_{hse}(W)$.

(2) There exists a sequence of positive numbers $\{\rho_{\mu}\}$ such that for $\omega_{1}, \omega_{2} \in \Gamma_{hse}(W)$ in (1)

$$\lim_{\mu \to \infty} M_{\mu}(\rho_{\mu}) = 0. \tag{3.6}$$

We cut W_{μ} along all ρ_{μ} -half cycles in each component of $W_{\mu} - \overline{F}'_{3\mu}$, then we can get a new canonical exhaustion (W'_{μ}) , and each component of $\partial W'_{\mu}$ is a dividing cycle consisting of piecewise analytic curves.

DEFINITION 7. Above mentioned exhaustion (W'_{μ}) is called the special canonical exhaustion associated with (F_{3n+1}) and $\omega_1, \omega_2 \in \Gamma_{\text{hse}}(W)$.

4. Let W be an arbitrary Riemann surface and (F_n) be an exhaustion of W. Then there exists on F_n a canonical homology basis

such that A_1 , B_1 , A_2 , B_2 , $\cdots A_{k_n}$, B_{k_n} form a canonical basis mod ∂F_n and $A_i \times B_j = \delta_i^j$, $A_i \times A_j = B_i \times B_j = 0$ (cf. [2]). We denote such a basis by H. B. (F_n) .

THEOREM 1. Let W be a Riemann surface which satisfies the conditions of Lemma 4, then for $\omega_1, \omega_2 \in \Gamma_{\text{hse}}(W)$ there exists a special canonical exhaustion (W'_{μ}) and an H.B. (W'_{μ}) such that Riemann's bilinear relation holds.

PROOF. At first we shall take (W'_{μ}) associated with (F_{3n+1}) and $\omega_1, \omega_2 \in \Gamma_{\text{hse}}(W)$ (cf. Lemma 4 and Def. 7). Next let $S^{ij}_{\mu\nu}(\rho_{\mu})$ be a ρ_{μ} -half cycle on $\partial W'_{\mu}$ (cf. Defs. 6, 7, and Lemma 4). Then we can get

$$(\omega_{1}, \omega_{2}^{*})_{W_{\mu}'} = \sum_{i=1}^{k_{\mu}} \left(\int_{A_{i}} \omega_{1} \int_{B_{i}} \overline{\omega}_{2} - \int_{A_{i}} \overline{\omega}_{2} \int_{B_{i}} \omega_{1} \right) + (\omega_{1}, \omega_{2}^{*} - (T_{W_{\mu}'} \omega_{2})^{*})_{W_{\mu}'}$$

where $a_i = \int_{A_i} \omega_2$, $b_i = \int_{B_i} \omega_2$, $T_{W'_{\mu}} \omega_2 = \sum_{i=1}^{n_{\mu}} b_i \sigma_{W'_{\mu}}(A_i) - a_i \sigma_{W'_{\mu}}(B_i)$, with reproducing differentials $\sigma_{W'_{\mu}}(A_i)$, $\sigma_{W'_{\mu}}(B_i)$ on W'_{μ} associated with cycles A_i resp. B_i . By the theorem in [1]

$$(\omega_1, \omega_2^* - (T_{W_{\mu}'}\omega_2)^*)_{W_{\mu}'} = \int_{\partial W_{\mu}'} u(p)\overline{\omega}_2,$$

where u(p) is a function defined separately on each component of $\partial W'_{\mu}$. If we put, (cf. (3.7)),

$$Q(\partial F_{3n_{\mu}}) = \sum_{i=1}^{m'(\mu)} \Gamma_{\mu}^{i}, \quad Q(\partial W_{\mu}) = \sum_{i=1}^{m'(\mu)} \sum_{j=1}^{N_{\mu}^{i}} \Gamma_{\mu}^{ij}, \quad Q(\partial W_{\mu}') = \sum_{i=1}^{m'(\mu)} \sum_{j=1}^{N_{\mu}^{i}} \Gamma_{\mu}'^{ij},$$

then, since $\omega_1, \omega_2 \in \Gamma_{hse}(W)$, we have

$$\left|\int_{\partial W'_{\mu}} u(p)\overline{\omega}_{2}\right| \leq \sum_{i,j} \left|\int_{\Gamma'_{\mu}^{ij}} u(p)\overline{\omega}_{2}\right| \leq \sum_{i,j} \int_{\Gamma'_{\mu}^{ij}} |\omega_{1}| \int_{\Gamma'_{\mu}^{ij}} |\omega_{2}|.$$

Therefore by Lemma 4 we can obtain

$$|(\omega_{1}, \omega_{2}^{*} - (T_{W_{\mu}^{\prime}}\omega_{2})^{*})| \leq \sum_{i} \sum_{j} \int_{\Gamma_{\mu}^{\prime ij}} |\omega_{1}| \int_{\Gamma_{\mu}^{\prime ij}} |\omega_{2}| \leq 2(1+h)(L(r_{\mu}) + M_{\mu}(\rho_{\mu})) \to 0.$$

COROLLARY 1. If we put h=1, Theorem 1 reduces to Theorem 1 in [4].

LEMMA 5. Under the conditions of Lemma 4, there exists an exhaustion $(W_{\mu}) \in \mathcal{E}_{h}$ such that the Riemann's bilinear relation holds for $\omega_{1}, \omega_{2} \in \Gamma_{hse}(W)$ where ω_{2} should satisfy the following conditions, (i) $\lim_{n \to \infty} ||T_{n}\omega_{2}||_{W-\overline{F}_{n}} < \infty$, (ii) $\sum_{n=1}^{\infty} ||T_{n+1}\omega_{2}||_{F_{n+2}-\overline{F}_{n}}^{2} < \infty$, where $a_{i} = \int_{A_{i}} \omega_{2}$, $b_{i} = \int_{B_{i}} \omega_{2}, T_{n}\omega_{2} = \sum_{i=1}^{k_{n}} b_{i}\sigma(A_{i}) - a_{i}\sigma(B_{i})$ with reproducing differentials $\sigma(A_{i}), \sigma(B_{i})$ on W associated with cycles A_{i}, B_{i} respectively, and $\{A_{i}, B_{i}\} = H.B.(F_{n}).$

PROOF. We put

No. 9]

K. MATSUI

[Vol. 40,

$$\begin{split} \widetilde{L}_{n}^{i}(r) &= \left(\int_{\Gamma_{r}^{i}} |\omega_{1}| + |\omega_{2}| + |T_{n}\omega_{2}| \right)^{2}, \quad \widetilde{L}_{n}(r) = \sum_{i=1}^{m(n)} \widetilde{L}_{n}^{i}(r), \\ \widetilde{L}(r) &= \widetilde{L}_{n}(r) \quad \text{for } \sum_{j}^{n-1} M_{j} \leq r < \sum_{j}^{n} M_{j} \text{ (cf. Lemma 2),} \\ \widetilde{M}_{\mu}^{i}(\rho_{\mu}) &= \sum_{j,\nu} \left(\int_{s_{ij}^{ij}(\rho_{\mu})} |\omega_{1}| + |\omega_{2}| + |T_{n}\omega_{2}| \right)^{2}, \quad \sum_{i} \widetilde{M}_{\mu}^{i}(\rho_{n}) = \widetilde{M}_{\mu}(\rho_{\mu}). \end{split}$$

Then by the same way as in Lemma 4, we can get for $\omega_1, \omega_2 \in \Gamma_{\text{hse}}(W)$ a sequence $\{\gamma_{\mu}|u=r_{\mu}\}$ tending to \Im such that $\lim_{\mu \to \infty} \widetilde{L}(r_{\mu}) = 0$, and $\lim_{\mu \to \infty} \widetilde{M}_{\mu}(\rho_{\mu}) = 0$. Therefore

$$(\omega_{1}, \omega_{2}^{*}) = (\omega_{1}, \omega_{2}^{*} - (T_{\mu}\omega_{2})^{*})_{W_{\mu}} + (\omega_{1}, \omega_{2}^{*} - (T_{\mu}\omega_{2})^{*})_{W-W_{\mu}} + (\omega_{1}, (T_{\mu}\omega_{2})^{*}).$$

But $|(\omega_{1}, \omega_{2}^{*} - (T_{\mu}\omega_{2})^{*})_{W-W_{\mu}}| \leq ||\omega_{1}||_{W-W_{\mu}} (||\omega_{1}||_{W-W_{\mu}} + ||T_{\mu}\omega_{2}||_{W-W_{\mu}}) \rightarrow 0.$

$$\begin{split} |(\omega_1, \omega_2^* - (T_{\mu}\omega_2)^*)_{W_{\mu}}| &= |(\omega_1, \omega_2^* - (T_{\mu}\omega_2)^*)_{W'_{\mu}}| \leq c'(L(r_{\mu}) + M_{\mu}(\rho_{\mu})) \rightarrow 0. \\ \text{Consequently} \qquad (\omega_1, \omega_2^*) = \lim_{\mu \to \infty} (\omega_1, (T_{\mu}\omega_2)^*). \qquad \text{Q.E.D.} \\ \text{THEOREM 2. If W satisfies the conditions of Lemma 4, the} \end{split}$$

THEOREM 2. If W satisfies the conditions of Lemma 4, the Riemann's bilinear relation holds for $\omega_1, \omega_2 \in \Gamma_{\text{hse}}(W)$, where the one has only a finite number of non vanishing periods.

REMARK. This is analogous to Theorem 2 in [4], but we have much more freedom for the choice of the homology basis though our surfaces are more restricted than theirs.

REMARK. If $W \in 0_{HD}$ and satisfies the conditions of Lemma 4, Theorem 2 reduces to Theorem 7 in [5].

References

- Accola, R.: The bilinear relation on open Riemann surfaces. Trans. Amer. Math. Soc., 96, 143-161 (1960).
- [2] Ahlfors, L.: Normalintegral auf offenen Riemannschen Flächen. Ann. Acad. Sci. Fenn., Ser. A, I, no. 35 (1947).
- [3] Ahlfors, L. and Sario, L.: Riemann Surfaces. Princeton (1960).
- [4] Kobori, A., and Sainouchi, Y.: On the Riemann's relation on open Riemann surfaces. J. Math. Kyoto Univ., 2, 11-23 (1962).
- [5] Kusunoki, Y.: On Riemann's period relations on open Riemann surfaces. Mem. Coll. Sci. Univ. of Kyoto, Ser. A, Math., 30, 1-22 (1956).
- [6] Noshiro, K.: Cluster Sets. Berlin (1960).
- [7] Sario, L.: Über Riemannschen Flächen mit hebbarem Rand. Ann. Acad. Sci. Fenn., Ser. A, I, no. 50 (1948).
- [8] V. I. Smirnov: Higher Mathematics. V (Japanese translation). Leningrad (1949-1951).