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The purpose of this paper is to give a simple proof of a theorem
of Brauer concerning the principal blocks of characters of finite
groups (F4, Theorem 3, see also F3).

We refer to Brauer FI, F2; Brauer-Nesbitt F6; Osima 8, and
Curtis-Reiner 7 as for basic concepts and theorems about the blocks
of characters of finite groups.

1o Let G be a group of a finite order and let p be a fixed prime
.number. We choose the algebraic number field 19 such that the
absolutely irreducible representations of G can be written with coef-
ficients in 12. Let p be a prime ideal divisor of p in 12 and let
be the ring of all p-integers of /2, and l the residue class field of

oo (mod p). The residue class map of % onto I2 will be denoted by
an asterisk; c-c*.

If M is a subset of G, we write IMI for the number of elements
of M. The centralizer of M in G will be denoted by C(M)and the
normalizer of M in G by Ne(M).

The group algebra of G over l Will be denoted by F(G) and its
center by Z(G). If M is a subset of G, we write F_MJ for the ele-
ment of [’(G) defined by

(1.1) FM m.

If Kx, K,..-, K are the conjugate classes of G, the elements
K, FK, ..., FK form a basis of Z(G). Let us denote by k0, k, "",

k- the distinct linear characters of Z(G). The m (absolutely) irre-
ducible characters Z0-1, Z, "", X- of G are distributed into s
blocks B0, Bx, ..., B,_ for p. There exists a one-to-one correspondence
between the set of blocks of G and the set of linear characters of
Z(G). The block Bo-Bo(G) of G containing the principal character

:Z0-1 is called the principal block of G.
Since each primitive idempotent of Z(G) is associated with a

block of G, we shall denote by , the primitive idempotent associated
with B,. We then have

If we set
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(1.3)
where u is an element in the class K, then the map wt of Z(G)
into defined by w(F_K)-(w(K,))* is a linear character of Z(.G)
Two characters Z and Z" belong to the same block, if and only if
w.*,(FK)-w(FK) for all p-regular classes K of G, i.e. for classes
of G which consist of elements whose order is prime to p. For Z e B,
we have

Let V be a set of p-regular elements of G. We have
(modp) (5, 6]). Hence if we set
(1.5) V I*)E
then eo e Z(G) and we have the following

Lemma 1. e0-o e rad Z(G) where tad Z(G) denotes the radical

of Z(G).
Proof. We have Z0(V)-I VI, and 2E(_V)-0 for Z e Bo(G) (9,

Theorem 2). Hence o):(eo)-1, and co(eo)-0 for e Bo(G). It follows
from (1.2) and (1.4) that @:(e0-0)-0 for every @:. This implies
that eo-Co e tad Z(G).

If p is prime to the order GI, we have eo-0. The generali-
zatioa of Lemma 1 for any block of G and its applications will be
shown in another paper.

Let Q be a p-subgroup of G. We shall say thatu, veG are Q-
conjugate, if there exists zr e Q such that v-zr-uTr. Let L, L,..., L
be the Q-conjugacy classes of G. The LI is a power of p and
[L I-1, if and only if L consists of an element in Ce(Q). Hence
VCa(Q)[*-I V I*. Now assume that Q is normal in G. If
KCe(G)- for KV, then K eradZ(G) (8, p. 18:3). Hence
if we set

(1.6)
where U=. VC(Q), then we obtain readily

Lemma 2. Z]o--c0 e rad Z(G).
In particular, if G contains a normal p-Sylow subgroup Q, then

we can prove that ]o-o. This will be shown also in another paper.

2. Let H be a subgroup of G and let h be a linear function
in Z(H). Then, as in Brauer [2 we define a linear function ha in
Z(G) by

(2.1) h(EK,) h(F__K, n Z(H)).
If K is a subgroup of G such that H=K, then we have (h)a-

ha. Denote by @’ the linear character of Z(H) associated with the
block b, and if @-(@’)a is a linear character of Z(G), then we say
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that b is defined and we set b-B where B is a block of Z(G) as-
sociated with

In the following, if H and K are subgroups of G, we shall
indicate by HK that H is contained in some conjugate of K. Let
Q be a p-subgroup of G and let H be a subgroup of G such that
QC(Q)HN(Q). The map a: [_K-KC(Q) defines a homo-
morphism of Z(G) into Z(H) (1, 7B). As an application, we obtain
the following Lemma (2, 2A).

Lemma :3. Le$ Q be a p-subgroup of G and le$ H be a sub-
group of G such tha$ QC(Q)_HN(Q). Le$ b be any block of H.
Then b is defined. If B is a block of G wih he defec$ group D
such ha$ QD, $hen $here eis$ blocks b of H for which b-B.

Now we shall prove the following
Lemma 4. Le$ H have $he same significance as in Lemma 3.

Le$ b be a block of H. Then b-Bo(G), if and only if b-Bo(H).
Proof. Denote by the idempotent of Z(H) associated with

Bo(H). To prove Lemma 4, we need show only that a(o)-’o. From
our assumption we see that Q is normal in H and that C(Q)-C(Q).
If we set V H- V’ and V’ C(Q)- U’, then it follows from Lemma
2 that r]- e rad Z(H) where ?-(1/IU’I*)U’. Since U’- VC(Q),
we have

a(e0)--(1/i VI*)EVMC(Q)3-(UI U’ I*)EU’]-].
It follows from Lemma 1 that r]-a(0) eradZ(H) and hence
a(0)- e radZ(H). Since a(0) is an idempotent of Z(H), this im-
plies that a(0)-.

Let zv be a fixed p-element of G. If v is a p-regular element
of C(zr), we have
(2.2) Z(rv)-

for Z e B. Here p ranges over the modular irreducible characters
of the blocks, b of C(zr) for which b-B. The d., are called the
generalized decomposition numbers of G. We obtain the following
theorem ([4], Corollary 4).

Theorem 1. If B=Bo(G), then qg; in (2.2) ranges over the
modular irreducible characters of Bo(C()).

Proof. Apply Lemma 4 to G and its subgroup H=C(7).
Let Q be a p-subgroup of G and let H be a subgroup of G such

that QCo(Q)H. Then we have
Lemma 5. Let b be a block of H with the defect group D (in H).

If Q=D, then bO=B is defined.
Proof. If we apply Lemma 3 to H and its subgroup G-QCo(Q)-

QC(Q), we see that there exist blocks b of G for which bn=b.
Again, applying Lemma 3 to G and its subgroup , -B is defined.
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Hence
b b)a ba B.

Theorem 2. Let Q be a p-subgroup of G and let H be a sub-
group of G such that QCa(Q)H. Let b be a block of H with the
defect group D. If Q,D, then ba-Bo(G), if and only if b-Bo(H).

Proof. Assume first that b-Bo(H). Applying Lemma 4 to H
and its subgroup G-QCa(Q), we have (Bo(G))’-Bo(H). On the other
hand, applying Lemma 4 to G and its subgroup G, we have (Bo(G))a--
Bo(G). Hence (Bo(H))a-(Bo(G)’)a-(Bo(G))"-Bo(G). Conversely, as-
sume that ba-Bo(G). There exist by Lemma 3 blocks of for
which b’-b. Hence (b’)a-ba-Bo(G). It follows from Lemma 4 that
b-Bo(G) and hence we have b-(Bo(G))’-Bo(H).

If we set Q-D in Theorem 2, we obtain (4, Theorem 3).

Reerences

R. Brauer: Zur Darstellungstheorie der Gruppen endlicher Ordnung. I.
Math. Z.., 69, 406-444 (1956).

----: Zur Darstellungstheorie der Gruppen endlicher Ordnung. II. Math.
Z., 72, 25-46 (1959).

--: On blocks of representations of finite groups. Proc. Nat. Acad. Sci.,
U. S. A., 47, 1888-1890 (1961).
: Some applications of the theory of blocks of characters of finite groups.

I. J. Algebra, 1, 152-167 (1964).
R. Brauer and W. Feit: On the number of irreducible characters of finite
groups in a given block. Proc. Nat. Acad. Sci., U. S. A., 45, 361-365 (1959).

R. Brauer and C. Nesbitt: On the modular characters of groups. Ann. of
Math., 42, 556-590 (1941).

C. W. Curtis and I. Reiner: Representation Theory of Finite Groups and
Associative Algebras. Interscience, New York, London (1962).

M. Osima: Notes on blocks of group characters. Math. J. Okayama Univ.,
4, 175-188 (1955).
: On some properties of group characters. Proc. Japan Acad., 36, 18-21

(1960).


