171. On a Theorem of Brauer

By Masaru Osima
Institute of Mathematics, College of General Education, Osaka University (Comm. by Zyoiti Suetuna, m.J.A., Dec. 12, 1964)

The purpose of this paper is to give a simple proof of a theorem of Brauer concerning the principal blocks of characters of finite groups ([4], Theorem 3, see also [3]).

We refer to Brauer [1], [2]; Brauer-Nesbitt [6]; Osima [8], and Curtis-Reiner [7] as for basic concepts and theorems about the blocks of characters of finite groups.

1. Let G be a group of a finite order and let p be a fixed prime number. We choose the algebraic number field Ω such that the absolutely irreducible representations of G can be written with coefficients in Ω. Let \mathfrak{p} be a prime ideal divisor of p in Ω and let $\mathfrak{o}_{\mathfrak{p}}$ be the ring of all \mathfrak{p}-integers of Ω, and $\bar{\Omega}$ the residue class field of $\mathfrak{o}_{\mathfrak{p}}(\bmod \mathfrak{p})$. The residue class map of $\mathfrak{o}_{\mathfrak{p}}$ onto $\bar{\Omega}$ will be denoted by an asterisk; $\alpha \rightarrow \alpha^{*}$.

If M is a subset of G, we write $|M|$ for the number of elements of M. The centralizer of M in G will be denoted by $C_{G}(M)$ and the normalizer of M in G by $N_{G}(M)$.

The group algebra of G over $\bar{\Omega}$ will be denoted by $\Gamma(G)$ and its center by $Z(G)$. If M is a subset of G, we write $[M]$ for the element of $\Gamma(G)$ defined by

$$
\begin{equation*}
[M]=\sum_{m \in M} m . \tag{1.1}
\end{equation*}
$$

If $K_{1}, K_{2}, \cdots, K_{m}$ are the conjugate classes of G, the elements $\left[K_{1}\right],\left[K_{2}\right], \cdots,\left[K_{m}\right]$ form a basis of $Z(G)$. Let us denote by $\psi_{0}, \psi_{1}, \cdots$, ψ_{s-1} the distinct linear characters of $Z(G)$. The m (absolutely) irreducible characters $\chi_{0}=1, \chi_{1}, \cdots, \chi_{m-1}$ of G are distributed into s blocks $B_{0}, B_{1}, \cdots, B_{s-1}$ for p. There exists a one-to-one correspondence between the set of blocks of G and the set of linear characters of $Z(G)$. The block $B_{0}=B_{0}(G)$ of G containing the principal character $\chi_{0}=1$ is called the principal block of G.

Since each primitive idempotent of $Z(G)$ is associated with a block of G, we shall denote by δ_{τ} the primitive idempotent associated with B_{τ}. We then have

$$
\psi_{\tau}\left(\delta_{\sigma}\right)= \begin{cases}1, & \tau=\sigma \tag{1.2}\\ 0, & \tau \neq \sigma .\end{cases}
$$

If we set

$$
\begin{equation*}
\omega_{i}\left(\left[K_{\infty}\right]\right)=\left|K_{\alpha}\right| \chi_{i}\left(u_{\infty}\right) / \chi_{i}(1) \tag{1.3}
\end{equation*}
$$

where u_{∞} is an element in the class K_{α}, then the map ω_{i}^{*} of $Z(G)$ into $\bar{\Omega}$ defined by $\omega_{i}^{*}\left(\left[K_{\alpha}\right]\right)=\left(\omega_{i}\left(\left[K_{w}\right]\right)\right)^{*}$ is a linear character of $Z(. G)$ Two characters χ_{i} and χ_{j} belong to the same block, if and only if $\omega_{i}^{*}\left(\left[K_{w}\right]\right)=\omega_{j}^{*}\left(\left[K_{\infty}\right]\right)$ for all p-regular classes K_{α} of G, i.e. for classes of G which consist of elements whose order is prime to p. For $\chi_{i} \in B_{\tau}$, we have

$$
\begin{equation*}
\psi_{\tau}=\omega_{i}^{*} . \tag{1.4}
\end{equation*}
$$

Let V be a set of p-regular elements of G. We have $|V| \not \equiv 0$ $(\bmod p)([5],[6])$. Hence if we set

$$
\begin{equation*}
\varepsilon_{0}=\left(1 /|V|^{*}\right)[V], \tag{1.5}
\end{equation*}
$$

then $\varepsilon_{0} \in Z(G)$ and we have the following
Lemma 1. $\varepsilon_{0}-\delta_{0} \in \operatorname{rad} Z(G)$ where $\operatorname{rad} Z(G)$ denotes the radical of $Z(G)$.

Proof. We have $\chi_{0}([V])=|V|$, and $\chi_{i}([V])=0$ for $\chi_{i} \notin B_{0}(G)([9]$, Theorem 2). Hence $\omega_{0}^{*}\left(\varepsilon_{0}\right)=1$, and $\omega_{i}^{*}\left(\varepsilon_{0}\right)=0$ for $\chi_{i} \notin B_{0}(G)$. It follows from (1.2) and (1.4) that $\psi_{\tau}\left(\varepsilon_{0}-\delta_{0}\right)=0$ for every ψ_{τ}. This implies that $\varepsilon_{0}-\delta_{0} \in \operatorname{rad} Z(G)$.

If p is prime to the order $|G|$, we have $\varepsilon_{0}=\delta_{0}$. The generalization of Lemma 1 for any block of G and its applications will be shown in another paper.

Let Q be a p-subgroup of G. We shall say that $u, v \in G$ are Q conjugate, if there exists $\pi \in Q$ such that $v=\pi^{-1} u \pi$. Let $L_{1}, L_{2}, \cdots, L_{t}$ be the Q-conjugacy classes of G. The $\left|L_{i}\right|$ is a power of p and $\left|L_{i}\right|=1$, if and only if L_{i} consists of an element in $C_{\theta}(Q)$. Hence $\left|V \cap C_{G}(Q)\right|^{*}=|V|^{*}$. Now assume that Q is normal in G. If $K_{\alpha} \cap C_{\theta}(G)=\phi$ for $K_{\alpha} \subseteq V$, then $\left[K_{\alpha}\right] \in \operatorname{rad} Z(G)([8]$, p. 183). Hence if we set

$$
\begin{equation*}
\eta_{0}=\left(1 /|U|^{*}\right)[U] \tag{1.6}
\end{equation*}
$$

where $U=V \cap C_{G}(Q)$, then we obtain readily
Lemma 2. $\eta_{0}-\delta_{0} \in \operatorname{rad} Z(G)$.
In particular, if G contains a normal p-Sylow subgroup Q, then we can prove that $\eta_{0}=\delta_{0}$. This will be shown also in another paper.
2. Let H be a subgroup of G and let h be a linear function in $Z(H)$. Then, as in Brauer [2] we define a linear function h^{G} in $Z(G)$ by

$$
\begin{equation*}
h^{a}\left(\left[K_{\alpha}\right]\right)=h\left(\left[K_{\alpha} \cap Z(H)\right]\right) . \tag{2.1}
\end{equation*}
$$

If K is a subgroup of G such that $H \subseteq K$, then we have $\left(h^{K}\right)^{\epsilon}=$ h^{θ}. Denote by ψ^{\prime} the linear character of $Z(H)$ associated with the block b, and if $\psi=\left(\psi^{\prime}\right)^{G}$ is a linear character of $Z(G)$, then we say
that b^{G} is defined and we set $b^{G}=B$ where B is a block of $Z(G)$ associated with $\left(\psi^{\prime}\right)^{\epsilon}$.

In the following, if H and K are subgroups of G, we shall indicate by $H \subseteq{ }_{0} K$ that H is contained in some conjugate of K. Let Q be a p-subgroup of G and let H be a subgroup of G such that $Q C_{G}(Q) \subseteq H \subseteq N_{\theta}(Q)$. The map $\sigma:\left[K_{\alpha}\right] \rightarrow\left[K_{\alpha} \cap C_{\theta}(Q)\right]$ defines a homomorphism of $Z(G)$ into $Z(H)$ ([1], 7B). As an application, we obtain the following Lemma ([2], 2A).

Lemma 3. Let Q be a p-subgroup of G and let H be a subgroup of G such that $Q C_{G}(Q) \subseteq H \subseteq N_{G}(Q)$. Let be any block of H. Then b^{G} is defined. If B is a block of G with the defect group D such that $Q \sqsubseteq_{c} D$, then there exist blocks b of H for which $b^{\epsilon}=B$.

Now we shall prove the following
Lemma 4. Let H have the same significance as in Lemma 3. Let b be a block of H. Then $b^{G}=B_{0}(G)$, if and only if $b=B_{0}(H)$.

Proof. Denote by δ_{0}^{\prime} the idempotent of $Z(H)$ associated with $B_{0}(H)$. To prove Lemma 4, we need show only that $\sigma\left(\delta_{0}\right)=\delta_{0}^{\prime}$. From our assumption we see that Q is normal in H and that $C_{H}(Q)=C_{G}(Q)$. If we set $V \cap H=V^{\prime}$ and $V^{\prime} \cap C_{\theta}(Q)=U^{\prime}$, then it follows from Lemma 2 that $\eta_{0}^{\prime}-\delta_{0}^{\prime} \in \operatorname{rad} Z(H)$ where $\eta_{0}^{\prime}=\left(1 /\left|U^{\prime}\right|^{*}\right)\left[U^{\prime}\right]$. Since $U^{\prime}=V \cap C_{\theta}(Q)$, we have

$$
\sigma\left(\varepsilon_{0}\right)=\left(1 /|V|^{*}\right)\left[V \cap C_{G}(Q)\right]=\left(1 /\left|U^{\prime}\right|^{*}\right)\left[U^{\prime}\right]=\eta_{0}^{\prime} .
$$

It follows from Lemma 1 that $\eta_{0}^{\prime}-\sigma\left(\delta_{0}\right) \in \operatorname{rad} Z(H)$ and hence $\sigma\left(\delta_{0}\right)-\delta_{0}^{\prime} \in \operatorname{rad} Z(H)$. Since $\sigma\left(\delta_{0}\right)$ is an idempotent of $Z(H)$, this implies that $\sigma\left(\delta_{0}\right)=\delta_{0}^{\prime}$.

Let π be a fixed p-element of G. If v is a p-regular element of $C_{\theta}(\pi)$, we have

$$
\begin{equation*}
\chi_{i}(\pi v)=\sum_{\rho} d_{i \rho}^{\pi} \varphi_{\rho}^{\pi}(v) \tag{2.2}
\end{equation*}
$$

for $\chi_{i} \in B$. Here φ_{ρ}^{π} ranges over the modular irreducible characters of the blocks b of $C_{\theta}(\pi)$ for which $b^{\theta}=B$. The $d_{i \rho}^{\pi}$ are called the generalized decomposition numbers of G. We obtain the following theorem ([4], Corollary 4).

Theorem 1. If $B=B_{0}(G)$, then φ_{ρ}^{π} in (2.2) ranges over the modular irreducible characters of $B_{0}\left(C_{\theta}(\pi)\right)$.

Proof. Apply Lemma 4 to G and its subgroup $H=C_{G}(\pi)$.
Let Q be a p-subgroup of G and let H be a subgroup of G such that $Q C_{G}(Q) \subseteq H$. Then we have

Lemma 5. Let b be a block of H with the defect $\operatorname{group} D($ in $H)$. If $Q \subseteq{ }_{0} D$, then $b^{a}=B$ is defined.

Proof. If we apply Lemma 3 to H and its subgroup $\widetilde{G}=Q C_{G}(Q)=$ $Q C_{H}(Q)$, we see that there exist blocks \widetilde{b} of \widetilde{G} for which $\widetilde{b}^{H}=b$. Again, applying Lemma 3 to G and its subgroup $\widetilde{G}, \widetilde{b}^{G}=B$ is defined.

Hence

$$
b^{G}=\left(\tilde{b}^{\underline{B}}\right)^{G}=\tilde{b}^{G}=B
$$

Theorem 2. Let Q be a p-subgroup of G and let H be a subgroup of G such that $Q C_{G}(Q) \subseteq H$. Let b be a block of H with the defect group D. If $Q \leqq_{0} D$, then $b^{\epsilon}=B_{0}(G)$, if and only if $b=B_{0}(H)$.

Proof. Assume first that $b=B_{0}(H)$. Applying Lemma 4 to H and its subgroup $\widetilde{G}=Q C_{G}(Q)$, we have $\left(B_{0}(\widetilde{G})\right)^{H}=B_{0}(H)$. On the other hand, applying Lemma 4 to G and its subgroup \widetilde{G}, we have $\left(B_{0}(\widetilde{G})\right)^{g}=$ $B_{0}(G)$. Hence $\left(B_{0}(H)\right)^{G}=\left(B_{0}(\widetilde{G})^{H}\right)^{G}=\left(B_{0}(\widetilde{G})\right)^{G}=B_{0}(G)$. Conversely, assume that $b^{\theta}=B_{0}(G)$. There exist by Lemma 3 blocks \widetilde{b} of \widetilde{G} for which $\widetilde{b}^{H}=b$. Hence $\left(\widetilde{b}^{H}\right)^{G}=\widetilde{b}^{G}=B_{0}(G)$. It follows from Lemma 4 that $\widetilde{b}=B_{0}(\widetilde{G})$ and hence we have $b=\left(B_{0}(\widetilde{G})\right)^{H}=B_{0}(H)$.

If we set $Q=D$ in Theorem 2, we obtain ([4], Theorem 3).

References

[1] R. Brauer: Zur Darstellungstheorie der Gruppen endlicher Ordnung. I. Math. Z., 69, 406-444 (1956).
[2] -: Zur Darstellungstheorie der Gruppen endlicher Ordnung. II. Math. Z., 72, 25-46 (1959).
[3] -: On blocks of representations of finite groups. Proc. Nat. Acad. Sci., U. S. A., 47, 1888-1890 (1961).
[4] -: Some applications of the theory of blocks of characters of finite groups. I. J. Algebra, 1, 152-167 (1964).
[5] R. Brauer and W. Feit: On the number of irreducible characters of finite groups in a given block. Proc. Nat. Acad. Sci., U. S. A., 45, 361-365 (1959).
[6] R. Brauer and C. Nesbitt: On the modular characters of groups. Ann. of Math., 42, 556-590 (1941).
[7] C. W. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras. Interscience, New York, London (1962).
[8] M. Osima: Notes on blocks of group characters. Math. J. Okayama Univ., 4, 175-188 (1955).
[9] -: On some properties of group characters. Proc. Japan Acad., 36, 18-21 (1960).

