168. Special Type of Separable Algebra over a Commutative Ring

By Teruo KANZAKI

Department of Mathematics, Osaka Gakugei Daigaku, Osaka (Comm. by Zyoiti SUETUNA, M.J.A., Dec. 12, 1964)

In the previous paper [4], we considered a type of separable algebra over a field which has the simple ideal components whose degrees are all prime to the characteristic of the field. In this paper we consider the case of algebra over a commutative ring.

Let Δ be an algebra over a commutative ring R. In the enveloping algebra $\Delta^e = \Delta \bigotimes_R \Delta^0$ we consider the involution * defined by $(x \bigotimes y^0)^* = y \bigotimes x^0$ for $x \bigotimes y^0 \in \Delta^e$. We set $J = \{x \bigotimes 1^0 - 1 \bigotimes x^0 \mid x \in \Delta\}$, then $J^* = J$. Let A be the right annihilator of J in Δ^e , then A^* is the left annihilator of J and a left ideal in Δ^e . Let $\varphi : \Delta^e \to \Delta$ be the Δ^e -homomorphism defined by $\varphi(x \bigotimes y^0) = xy$, then $\varphi(A^*)$ is a two sided ideal of Δ . In this paper we shall call Δ a strongly separable algebra over R when $\varphi(A^*) = \Delta$.

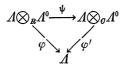
In §1, we shall show that Λ is a strongly separable algebra over R if and only if Λ is a separable algebra over R and $\Lambda = C \bigoplus [\Lambda, \Lambda]$ where C is the center of Λ and $[\Lambda, \Lambda]$ is the C-submodule of Λ generated by xy - yx for all $x, y \in \Lambda$. In §2, we consider an R-algebra Λ such that Λ is an R-projective module, and we shall show that if $A \neq 0$ then there exists a non zero left ideal in Λ which is generated by a finite number of elements as R-module. Finally, we have that for a central separable R-algebra Λ , Λ is hereditary if and only if R is hereditary. In this paper we assume that every rings and algebras have identity elements.

1. Strongly separable algebra.

PROPOSITION 1. Let Λ be an algebra over R. Then $\varphi(A^*) = \Lambda$ if and only if $\Lambda^e = \Lambda^e J \bigoplus A^*$. If $\varphi(A^*) = \Lambda$ then Λ is a separable algebra over R and $\Lambda = C \bigoplus [\Lambda, \Lambda]$, where C is the center of Λ and $[\Lambda, \Lambda]$ is the C-submodule of Λ generated by xy - yx for all $x, y \in \Lambda$. Proof. If $\Lambda^e = \Lambda^e J \bigoplus \Lambda^*$ then we have $\varphi(A^*) = \Lambda$. Now we assume $\varphi(A^*) = \Lambda$. Since Ker $\varphi = \Lambda^e J$, we have $\Lambda^e = A^* + \Lambda^e J$. Therefore we have $\Lambda^{e^*} = A^{**} + J^* \cdot \Lambda^{e^*}$ and $\Lambda^e = A + J\Lambda^e$. Let $1 \otimes 1^0 = z_1 + z_2$ with $z_1 \in A$, $z_2 \in J\Lambda^e$. If $x \in A^* \cap \Lambda^e J$ then $x = x \cdot 1 \otimes 1^0 = xz_1 + xz_2 = 0$. It follows that $A^* \cap \Lambda^e J = 0$ and $\Lambda^e = A^* \bigoplus \Lambda^e J$. Thus the first half of the proposition is proved. If $\varphi(A^*) = \Lambda$, then φ induces an isomorphism of A^* onto Λ therefore Λ is a separable algebra over R. Since $\Lambda^e = \Lambda^e J \bigoplus \Lambda^*$, there are orthogonal idempotents $e_1 \in \Lambda^e J$ and $e_2 \in A^*$ such that $1 \otimes 1^0 = e_1 + e_2$.¹⁾ Then $A^e J = A^e e_1 A^* = A^e e_2$ and $\varphi(e_2) = 1$. Since A is a right ideal, $A = Ae_1 + Ae_2$, where $Ae_1 = AA^e e_1 = AA^e J = AJ$ and $Ae_2 \subseteq AA^* \subseteq A \cap A^*$. Now $Ae_1 \cap (A \cap A^*) \subseteq A^e J \cap A^* = 0$ therefore we have $Ae_2 = A \cap A^*$ and $A = AJ \bigoplus (A \cap A^*)$. Taking *, we have $A^* = JA^* \bigoplus (A \cap A^*)$. Since φ is an isomorphism of A^* and $A, A = \varphi(JA^*) \bigoplus \varphi(A \cap A^*)$. Now $\varphi(A \cap A^*) = \varphi(Ae_2) = \varphi(A) = C$ by [1], Proposition 1.1, and $\varphi(JA^*) = [A, A]$ as shown in [4], therefore we have $A = [A, A] \bigoplus C$.

LEMMA 1. Let Λ be an algebra over R, and C the center of Λ . Then Λ is a strongly separable algebra over R if and only if Λ is a strongly separable algebra over C and C is a separable algebra over R.

Proof. Suppose that Λ is a strongly separable algebra over R. Let A_{σ} be the right annihilator of $\{x \bigotimes_{\sigma} 1^{\circ} - 1 \bigotimes_{\sigma} x^{\circ} \in \Lambda \bigotimes_{\sigma} \Lambda^{\circ} | x \in \Lambda\}$ in $\Lambda \bigotimes_{\sigma} \Lambda^{\circ}$ and $\psi: \Lambda \bigotimes_{R} \Lambda^{\circ} \to \Lambda \bigotimes_{\sigma} \Lambda^{\circ}$ the ring homomorphism defined by $\psi(x \bigotimes y^{\circ}) = x \bigotimes_{\sigma} y^{\circ}$. Then $\psi(A^{*}) \subseteq A_{\sigma}^{*}$ and we have a commutative diagram



where φ' is defined by $\varphi'(x \otimes_{\sigma} y^{0}) = xy$. Since $\varphi(A^{*}) = \varphi'(\psi(A^{*})) \subseteq \varphi'(A^{*}_{\sigma})$ and $\varphi(A^{*}) = \Lambda$ by assumption, we have $\varphi'(A^{*}_{\sigma}) = \Lambda$ and Λ is a strongly separable algebra over C. By Proposition 1 Λ is separable over R, therefore C is also separable over R by [1], Theorem 2.3. Conversely assume that Λ is a strongly separable algebra over C and C is a separable algebra over R. Since the exact sequence $0 \rightarrow \operatorname{Ker} \varphi'' \rightarrow C \otimes_{R} C \xrightarrow{\varphi''} C \rightarrow 0$ splits where φ'' is defined by $\varphi''(x \otimes y^{0}) = x \cdot y$, the sequence

$$(A \otimes_{R} A^{0}) \otimes_{\sigma \otimes_{R} \sigma} (C \otimes_{R} C) \longrightarrow (A \otimes_{R} A^{0}) \otimes_{\sigma \otimes_{R} \sigma} C \longrightarrow 0$$

splits, therefore $A \bigotimes_R A^0 \xrightarrow{\psi} A \bigotimes_{\sigma} A^0 \rightarrow 0$ splits. There exists a homomorphism $\xi: A \bigotimes_{\sigma} A^0 \rightarrow A \bigotimes_R A^0$ such that $\psi \circ \xi = \text{identity}$. We denote by A' the annihilator of $\{x \bigotimes 1^0 - 1 \bigotimes x^0 \in C \bigotimes_R C \mid x \in C\}$ in $C \bigotimes_R C$. Since C is separable over R, there exists z in A' such that $z^* = z$, $z^2 = z$, and $\varphi''(z) = 1$. Since A is strongly separable over C, there exists an idempotent element e_1 in A_{σ}^* such that $e_1^* = e_1$ and $\varphi'(e_1) = 1$. Let $\eta: C \bigotimes_R C \rightarrow A \bigotimes_R A$ be the homomorphism induced by the inclusion $C \rightarrow A$ and let $e = \eta(z) \cdot \xi(e_1)$. Then we have $e^* = e$ and $\varphi(e) = \varphi(\eta(z) \cdot \xi(e_1)) =$ $\varphi''(z) \cdot \varphi'(e_1) = 1$. Moreover e is contained in A^* . Therefore we have $\varphi(A^*) = A$.

¹⁾ e_1 and e_2 are symmetric, i.e. $e_1^* = e_1$ and $e_2^* = e_2$, because $e_2^* e_1 = e_2^* - e_2^* e_2 \in A^e J \cap A^* = 0$ and $e_2^* = e_2^* e_2$, and $e_2 = (e_2^* e_2)^* = e_2^* e_2 = e_2^*$.

LEMMA 2. Suppose that the center C of a ring Λ is a field. Then Λ is a strongly separable algebra over C if and only if Λ is separable over C and $\Lambda = C \bigoplus [\Lambda, \Lambda]$.

Proof. The "only if" part is proved in Proposition 1. To prove the "if" part we may assume that C is an algebraically closed field by [4], Lemma 3. Then a separable algebra Λ over C is a direct sum of total matrix rings over C, therefore we may assume that $\Lambda = C_n$. Now since

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

we have

$$\begin{pmatrix} 1 & & & \\ 1 & & & \\ 0 & & & \\ & & & 1 \end{pmatrix} - \left\{ \begin{pmatrix} 1 & 1 & & & \\ 0 & 1 & & & \\ 0 & & & & \\ \end{pmatrix} \begin{pmatrix} 1 & 0 & & & \\ 0 & & & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & & & & \\ 0 & 1 & & & \\ 0 & & & & & \\ \end{pmatrix} \begin{pmatrix} 1 & 1 & & & & \\ 0 & & & & & \\ 0 & & & & & \\ \end{pmatrix} \right\} = \begin{pmatrix} 0 & & & & & \\ 2 & 1 & & & \\ 0 & & & & & \\ 0 & & & & & 1 \end{pmatrix},$$

and repeating the same argument we have

$$\begin{pmatrix} 1 & 0 \\ 1 & \cdot \\ 0 & \cdot \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & \cdot \\ 0 & 0 \\ 0 & n \end{pmatrix} \in \llbracket \Lambda, \Lambda \rrbracket.$$

Therefore if n is a multiple of the characteristic p of C, then the unit matrix E is contained in $[\Lambda, \Lambda]$. This contradicts the assumption $C \cap [\Lambda, \Lambda] = 0$. Thus n is prime to p, and then by the Theorem in [4] Λ is strongly separable C-algebra.

LEMMA 3. Let Λ be the center of a ring Λ . Then Λ is a strongly separable algebra over C if and only if Λ is separable over C and $\Lambda = C \oplus [\Lambda, \Lambda]$.

Proof. The "only if" part is proved in Proposition 1. We shall prove here the "if" part. Let m be any maximal ideal of C. For the localization C_m of C by m, we set $\Lambda_m = \Lambda \otimes_o C_m$ and the right annihilator of $\{x \otimes 1^o - 1 \otimes x^o \in \Lambda_m^* | x \in \Lambda_m\}$ in $\Lambda_m^* = \Lambda_m \otimes_{\sigma_m} \Lambda_m^o$ is denoted by A_m . If an element of Λ is identified with the image by the homomorphism $\Lambda \to \Lambda \otimes_o C_m$, then we have $A_m^* = A^*C_m$ and $\varphi_m(A_m^*) =$ $\varphi(A^*)C_m$ where φ_m : $\Lambda_m \otimes_{\sigma_m} \Lambda_m^o \to \Lambda_m$. Consequently, we have that $\varphi(A^*) \ni 1$ if and only if $\varphi_m(A_m^*) \ni 1$ for all maximal ideals m of C. On the other hand if Λ is a central separable C-algebra and $\Lambda =$ $C \oplus [\Lambda, \Lambda]$, then we have that $\Lambda_{\rm m}$ is a central separable $C_{\rm m}$ -algebra and $\Lambda_{\rm m} = C_{\rm m} \oplus [\Lambda_{\rm m}, \Lambda_{\rm m}]$. Therefore we may assume that C is a local ring with the maximal ideal m. By proposition 1.4 and Corollary 1.6 in [1] we have that $\Lambda/{\rm m}\Lambda \cong \Lambda \otimes_o C/{\rm m}$ is a central separable $C/{\rm m}$ algebra and $\bar{A} = \bar{C} + [\bar{A}, \bar{A}]$ if we set $\bar{A} = \Lambda/{\rm m}\Lambda$ and $\bar{C} = C + {\rm m}\Lambda/{\rm m}\Lambda \cong C/{\rm m}$. If $x \in \bar{C} \cap [\bar{A}, \bar{A}]$ then $x = c + \mu = \lambda + \mu'$, $c \in C$, $\lambda \in [\Lambda, \Lambda]$, $\mu, \mu' \in {\rm m}\Lambda$. Then $c - \lambda \in {\rm m}\Lambda = {\rm m}C \oplus {\rm m}[\Lambda, \Lambda]$, therefore $c \in {\rm m}C$, $\lambda \in {\rm m}[\Lambda, \Lambda]$. It follows that $\bar{C} \cap [\bar{A}, \bar{A}] = 0$ and $\bar{A} = \bar{C} \oplus [\bar{A}, \bar{A}]$. By Lemma 2 \bar{A} is a strongly separable \bar{C} -algebra. Accordingly, we have $\bar{A}^e = \bar{A}^* \oplus \bar{A}^e \bar{J}$ where \bar{A} is the right annihilator of $\bar{J} = \{\bar{x} \otimes \bar{1}^0 - \bar{1} \otimes \bar{x}^0 \in \bar{A}^e | \bar{x} \in \bar{A}\}$ in \bar{A}^e . Since $A = {\rm Hom}_{A^e}(\Lambda, A^e)$ (see [1], p. 369) and Λ is a projective A^e -module, we have

 $A \otimes_{\sigma} C/\mathfrak{m} \cong \operatorname{Hom}_{A^{e} \otimes_{\sigma} \sigma/\mathfrak{m}} (A \otimes C/\mathfrak{m} A^{e} \otimes_{\sigma} C/\mathfrak{m}) = \operatorname{Hom}_{\overline{A}^{e}} (\overline{A}, \overline{A}^{e}).$

Therefore $A \otimes_o C/\mathfrak{m} = \overline{A}$ and $A^* \otimes_o C/\mathfrak{m} = \overline{A}^*$. It follows that $\Delta^e = A^* + \Delta^e J + \mathfrak{m} \Delta^e$. Since $\mathfrak{m} \Delta^e$ is contained in the radical of Δ^e , by Nakayama's Lemma we have $\Delta^e = A^* + \Delta^e J$ and then $\varphi(A^*) = \Delta$.

By Lemmas 1 and 3, we have

THEOREM 1. Let Λ be an algebra over an arbitrary commutative ring R and C the center of Λ . Then Λ is a strongly separable algebra over R if and only if Λ is a separable algebra over R and $\Lambda = C \oplus [\Lambda, \Lambda]$.

From the proof of Lemma 3 we have

COROLLARY 1. Λ is a strongly separable R-algebra if and only if $\Lambda/m\Lambda$ is a strongly separable R/m-algebra for all maximal ideals m of R.

COROLLARY 2. If Λ_1 and Λ_2 are strongly separable R-algebras then $\Lambda_1 \otimes_{\mathbb{R}} \Lambda_2$ is either 0 or a strongly separable R-algebra.

2. Annihilator ideal A. Let Λ be an R-algebra such that Λ is projective as R-module. Then there exists a family $\{\varphi_{\kappa}, \lambda_{\kappa}\}_{\kappa \in I}$ of homomorphisms φ_{κ} in $\operatorname{Hom}_{R}(\Lambda, R)$ and elements λ_{κ} in Λ such that $x = \sum_{\kappa} \varphi_{\kappa}(x)\lambda_{\kappa}$ for any element x in Λ . In this section, we consider the right annihilator Λ of $J = \{x \otimes 1^{\circ} - 1 \otimes x^{\circ} \in \Lambda^{e} \mid x \in \Lambda\}$ in $\Lambda^{e} = \Lambda \otimes_{R} \Lambda^{o}$ for such an algebra Λ . We can see $\operatorname{Hom}_{R}(\operatorname{Hom}_{R}(\Lambda, R), \Lambda)$ as Λ^{e} -right module by setting $f \cdot x \otimes y^{\circ}(g) = y \cdot f(x \cdot g)$ for $x \otimes y^{\circ} \in \Lambda^{e}$, $f \in \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(\Lambda, R), \Lambda)$ and $g \in \operatorname{Hom}_{R}(\Lambda R)$ where $x \cdot g(z) = g(z \cdot x), z \in \Lambda$.

LEMMA 4 (cf. [2], VI, Proposition 5.2). If Λ is an *R*-algebra which is projective as *R*-module, then the homomorphism $\theta: \Lambda \bigotimes_R \Lambda^0 \to$ $\operatorname{Hom}_R(\operatorname{Hom}_R(\Lambda, R), \Lambda)$ defined by $\theta(x \bigotimes y_0)(f) = f(x) \cdot y$ is a Λ^e -monomorphism, and $\theta(\Lambda)$ is contained in $\operatorname{Hom}_A^r(\operatorname{Hom}_R(\Lambda, R), \Lambda)$ where $\operatorname{Hom}_R(\Lambda, R)$ is regarded as Λ -right module by setting $f \cdot \lambda(z) = f(\lambda \cdot z)$ for $f \in \operatorname{Hom}_R(\Lambda, R)$.

Proof. Let f be an element of $\operatorname{Hom}_{R}(A, R)$. Since

No. 10] Special Type of Separable Algebra over Commutative Ring

$$\begin{aligned} \theta(x \otimes y^0 \cdot x_1 \otimes y_1^0)(f) &= \theta(x x_1 \otimes (y_1 y)^0)(f) = f(x x_1) y_1 y = (x_1 f)(x) \cdot y_1 y \\ &= y_1 \cdot (x_1 \cdot f)(x) \cdot y y_1(\theta(x \otimes y^0)(x_1 f)) = \theta(x \otimes y^0) \cdot x_1 \otimes y_1^0(f), \end{aligned}$$

 θ is a Δ^{e} -homomorphism. If $\theta\left(\sum_{i} x_{i} \otimes y_{i}^{0}\right) = 0$ for an element $\sum_{i} x_{i} \otimes y_{i}^{0}$ in $\Delta \otimes_{R} \Delta^{0}$, then $\sum_{i} f(x_{i})y_{i} = 0$ for every element f in $\operatorname{Hom}_{R}(\Delta, R)$, therefore we have $\sum_{i} x_{i} \otimes y_{i}^{0} = \sum_{i} \sum_{\kappa} \varphi_{\kappa}(x_{i})\lambda_{\kappa} \otimes y_{i}^{0} = \sum_{i} \sum_{\kappa} \lambda_{\kappa} \otimes \varphi_{\kappa}(x_{i})y_{i} = 0$ by using the above family $\{\varphi_{\kappa}, \lambda_{\kappa}\}_{\kappa \in I}$. Hence θ is a Δ^{e} -monomorphism. Let $\sum_{i} x_{i} \otimes y_{i}^{0}$ be any element in A. Then we have $\sum_{i} \lambda x_{i} \otimes y_{i}^{0} = \sum_{i} x_{i} \otimes (y_{i}\lambda)^{0}$ for every λ in Δ . Set $\psi = \theta\left(\sum_{i} x_{i} \otimes y_{i}^{0}\right)$, then we have

$$\psi(f\lambda) = \sum_{i} f \cdot \lambda(x_{i}) \cdot y_{i} = \sum_{i} f(\lambda x_{i}) y_{i} = heta \Big(\sum_{i} \lambda x_{i} \otimes y_{i}^{0} \Big)(f)$$

 $= heta \Big(\sum_{i} x_{i} \otimes (y_{i}\lambda)^{0} \Big)(f) = \sum_{i} f(x_{i}) \cdot y_{i}\lambda = \psi(f)\lambda.$

Therefore $\psi \in \operatorname{Hom}_{A}^{r}(\operatorname{Hom}_{R}(\Lambda, R), \Lambda)$.

THEOREM 2. Let Λ be an algebra over R such that Λ is an R-projective module. If $A \neq 0$ then there exists a right ideal of Λ which is a finitely generated R-module.

Proof. For $\sum_{i} x_i \otimes y_i^0 \neq 0$ in A we set $z_{\kappa} = \theta \left(\sum_{i} x_i \otimes y_i^0 \right) (\varphi_{\kappa}) = \sum_{i} \varphi_{\kappa}(x_i) y_i$, where $\{\varphi_{\kappa}, \lambda_{\kappa}\}$ is the family as above. Since $\theta \left(\sum_{i} x_i \otimes y_i^0 \right) \neq 0$, there is a non zero element z_{κ} and the number of $z_{\kappa} \neq 0$ is finite. For every element λ in Λ , we have

$$egin{aligned} & z_{\kappa}\lambda\!=\! heta\!\left(\sum\limits_{i}x_{i}\!\otimes\!y_{i}^{0}
ight)\!(arphi_{\kappa})\!\cdot\!\lambda\!=\! heta\!\left(\sum\limits_{i}x_{i}\!\otimes\!y_{i}^{0}
ight)\!(arphi_{\kappa}\!\cdot\!\lambda)\!=\!\sum\limits_{i}arphi_{\kappa}(\lambda x_{i})y_{i} \ &=\sum\limits_{j}arphi_{\kappa}\!\left(\lambda\sum\limits_{j}arphi_{j}(x_{i})\lambda_{j}
ight)\!y_{i}\!=\!\sum\limits_{ij}arphi_{\kappa}(\lambda\lambda_{j})arphi_{j}(x_{i})y_{i}\!=\!\sum\limits_{j}arphi_{\kappa}(\lambda\lambda_{j})z_{j}, \ &=\sum\limits_{i}arphi_{\kappa}(\lambda\lambda_{i})arphi_{i}(x_{i})arphi_{i}(x_{i})arphi_{i}(x_{i})arphi_{i}(x_{i})arphi_{i}(x_{i})arphi_{i}(x_{i})arphi_{i}(x_{i})arphi_{i}(x_{i})arphi_{i}(x_{i})arphi_{i}(x_{i})arphi_{i}arphi_{i}(x_{i})arphi_{i}arphi_{i}(x_{i})arphi_{i}arphi_{i}(x_{i})arphi_{i}arphi_{i}(x_{i})arphi_{i}arphi_{i}(x_{i})arphi_{i}arphi_{i}(x_{i})arphi_{i}arphi_{i}(x_{i})arphi_{i}arphi_{i}(x_{i})arphi_{i}arphi_{i}(x_{i})arphi_{i}arphi_{i}(x_{i})arphi_{i}arphi_{i}(x_{i})arphi_{i}arphi_{i}arphi_{i}(x_{i})arphi_{i}arphi_{i}arphi_{i}arphi_{i}arphi_{i}(x_{i})arphi_{i}arphi_{i}arphi_{i}arphi_{i}arphi_{i}(x_{i})arphi_{i}arphi_{i}arphi_{i}arphi_{i}(x_{i})arphi_{i}arphi_{i}arphi_{i}arphi_{i}(x_{i})arphi_{i}arph$$

and $\sum_{j} \varphi_{\kappa}(\lambda \lambda_{j}) z_{j}$ is contained in $\sum_{\kappa} R z_{\kappa}$. It follows that $\mathfrak{A} = \sum_{\kappa} R z_{\kappa}$ is a right ideal of Λ which is a finitely generated *R*-module.

REMARK. If Λ is an R-algebra which is a finitely generated projective R-module, then $\theta: \Lambda \otimes_R \Lambda^0 \to \operatorname{Hom}_R(\operatorname{Hom}_R(\Lambda, R), \Lambda)$ is an isomorphism ([2], VI, Proposition 5.2). Then we have $\theta(A^*) =$ $\operatorname{Hom}_A^i(\operatorname{Hom}_R(\Lambda, R), \Lambda)$ and $\theta(A) = \operatorname{Hom}_A^r(\operatorname{Hom}_R(\Lambda, R), \Lambda)$. For the family $\{\varphi_{\kappa}, \lambda_{\kappa}\}_{\kappa \in I}$, if we set $\operatorname{Tr} = \sum_i \lambda_i \varphi_i$, then Tr is contained in $\operatorname{Hom}_R(\Lambda, R)$ and we have $\varphi(A^*) = \{f(\operatorname{Tr}) | f \in \operatorname{Hom}_A^i(\operatorname{Hom}_R(\Lambda, R), \Lambda)\}$ where $\varphi: \Lambda \otimes_R \Lambda^0 \to \Lambda$.

PROPOSITION 2. Let Λ be a central separable R-algebra. Then Λ is hereditary (see [2], p. 13) if and only if R is hereditary.

Proof. If Λ is R-separable then Λ is R-semisimple in the sense of Hattori [3]. By [3], § 2, p. 408, we have that if R is hereditary then Λ is hereditary. Conversely, we suppose that Λ is hereditary. For any ideal α of R, $\alpha\Lambda$ is a projective Λ -module. For the exact sequence $0 \rightarrow \alpha \rightarrow R \rightarrow R/\alpha \rightarrow 0$, we have an exact sequence

 $0 \longrightarrow \mathfrak{a} \bigotimes_{R} \Lambda \longrightarrow R \bigotimes_{R} \Lambda \longrightarrow R/\mathfrak{a} \bigotimes_{R} \Lambda \longrightarrow 0$

T. KANZAKI

since Λ is *R*-projective. Therefore we have $a \bigotimes_R \Lambda \cong \mathfrak{a} \cdot \Lambda$. Since Λ is *R*-projective and *R* is a direct summand of Λ as *R*-module, we have that \mathfrak{a} is a direct summand of *R*-projective module $\mathfrak{a} \cdot \Lambda \cong \mathfrak{a} \bigotimes_R \Lambda$ as *R*-module, therefore \mathfrak{a} is *R*-projective. Thus *R* is hereditary.

References

- [1] M. Auslander and O. Goldman: The Brauer group of a commutative ring. Trans. Amer. Math. Soc., 97, 367-409 (1960).
- [2] H. Cartan and S. Eilenberg: Homological Algebra. Princeton (1956).
- [3] A. Hattori: Semisimple algebras over a commutative ring. J. of Math. Soc. of Japan, 15, 404-419 (1963).
- [4] T. Kanzaki: A type of separable algebra. J. of Math. Osaka City Univ., 13, 41-43 (1962).