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1. Introduction. For any semigroup S, consider any congru-
ence 0 on S such that S/o is a semilattice, i.e., a commutative
idempotent semigroup. Such a p is called a semilattice-congruence
or simply s-congruence. As is well known, there is the smallest s-
congruence 0, on S in the sense of inclusion [1-7]. Let L=S/p, and
let S,, @€ L, be a congruence class modulo o,

S=US,, S.NS;=0, a#p.

@wEL

If the cardinal number |L| of L is exactly 1, that is, p, is the
universal relation on S, then S is called s-indecomposable; if | L|>1,
then S is s-decomposable. The partition of S due to p, is called the
greatest s-decomposition of S, and S/p, is called the greatest s-homo-
morphic image of S.

Theorem. In the greatest s-decomposition of a semigroup S,
each congruence class S, is s-indecomposable.

This theorem was proved by the author [4] and recently stated
by Petrich in [2] without proof. The purpose of this paper is to
give a proof of this theorem from somewhat different point of view.
Proposition 1 below can be proved by using the above theorem, but
here we are going to prove Proposition 1 directly and then to prove
the above theorem by using it.

2. Preliminaries. Let a,, -+, a, be elements of a semigroup
S. If an element a of S is the product of all of a,, ---, a, admitting
repeated use, then a is said to be fully generated by a,, +++, @,. The
set G of all the elements of S which are fully generated by a,, «--, a,
is a non-empty subsemigroup of S. G is called the subsemigroup of
S fully generated by a,, ---, a,.

Let &, be the free semigroup generated by = distinct letters
@, +++, a, in the usual sense, and ¥ be the subsemigroup of &, fully
generated by a,, «-+, a,. & is composed of all words any one of which
contains all of a,, ---, a,.

Let p be any s-congruence on F. We denote by ¢ the natural
mapping of & upon F/p, that is, for AeTF, Ap of F/p is the
congruence class modulo © containing A. For convenience of the
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proof, we define the partial ordering < in the semilattice &/p in the
usual way:

Ap=Byp iff (Bp)(Cp)=Ap for some Ce F
then ApB iff Ap=Bgp.
The letters x; in Lemmas 1 and 3 below denote some of a,, -+, a,;
and «; and x; may happen to be the same.
Lemma 1. Let x,+++x; ++- , be a word in F. Then
By oot By g Bipg *** B PLLigg * ¢ By + o+ By, 1ST=M,
Proof. Let X= «¢¢ &, @00, + ¢ Xy Y=0, 2500 +0 Tpuly ++» X4y,

and let Z=2, - ¢;,,, U=2, -+ 2,. Then ZUZ, UZU € & and we have
XoX*=(ZUZYUZU)p(UZU)ZUZ) by commutativity
=Y*%0Y. q.e.d.

Let Ae<F and let # be any one of the letters a,, :--,a,. We
define words Ax and xA in & as follows:

If A=w, --- x,, then Av=w, .- 2,2, xA=02, -+ ,. More gener-
ally, we can define words AZ and ZA in & for Ze%F,. Let Z=
2, +++ 2, Where 2,, -+, 2, are some of q,, +--, a,.

AZ=0, «++ X2 *** 2, ZA=2, +* 2,%; ++* X,
Clearly A(ZU)=(AZ)U, (ZU)A=Z(UA), Z, Ue S,. According to
Lemma 1, we see AxpxA and AZpZA, for Ze &,

Lemma 2. Let A, Be ¥, and x be any one of a,, +++, a,. Then
ApB implies AxpBx and xApxB.

Proof. With using Ap=Bgp and its compatibility, we have

(Az)p=((Ax)p)'=(ArAx)p=(Ap)(rAz)p) = (Bp)(xAx)p)
= (BrAx)p=(Br)p((Ar)p) = (Br)p.
In the same way, we have (Bx)p=(Ax)p. The dual case is obtained
immediately by the above remark.

Lemma 3. Again let x be any one of a,, +--,a,. Let Ae<F.
Then AxpA and xApA.

Proof. Since Ap=A’p, by Lemma 2,

(Az)p=(AAx)p=(Ap)(Ax)p)= Ap.
By Lemma 1, we can find B¢ Y, such that Ap=(xB)p.
Ap=A'p=(Ap)(Ap)(Ap)=(Ap)(xB)p)(Ap)
=((Az)p)(BA)p) = (A%)p.
Thus we have (Ax)p=Ap, or AxpA.

3. Propositions and Theorems.

Proposition 1. & is s-indecomposable.

Proof. Recalling that o is any s-congruence on <. Let A and
B be any elements of . According to Lemma 3,

AxpA if x is any one of a,, -+, a,.
Immediately we have
ABpA for all A,Be¥ and hence ApABoBApB.
Thus the proposition has been proved.
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As the application of Proposition 1, we have

Proposition 2. Let S be any semigroup, a,, ---, a, be elements
of S, and G be the subsemigroup of S fully generated by a,, - -, a,.
Then G is s-indecomposable.

Proof. Let G’ be an s-homomorphic image of G, and &F be the
semigroup fully generated by the letters a,, -+, a,, which is discussed
in the preceding section. Since & is homomorphic onto G,G is a
homomorphic image of the greatest s-homomorphic image of F. On
the other hand, & is s-indecomposable by Proposition 1 and hence
|G’ |=1. Thus G is s-indecomposable.

Proof of Theorem. Let o, be the smallest s-congruence on S so

that S= U/ S, Let ¢ be the smallest s-congruence on S,. We are
a€8/py

to prove that o is universal on S,. Suppose a0,b and a, b€ S,. Then
there are a finite number of elements

a=b;, by, +++, b, b,=b
such that b, and b,,, are related in such a fashion that one of the
following cases (1), (2), and (3) happens [5, 6, 7].

=20

Case I {b b‘_:yzz for some z,uc S 2, ye S
it+1
b.=zx?

Case 1I {b ‘__Zi;f for some z,uc S, xe S
+1
b.=

Case III {b ’_zz:; for some z,ue S xecS
i+1—

where S'=S {1}, 1 being the adjoined two-sided identity and where
%, Y, 2, w depend on 4. Now G, is defined as follows: G, is the sub-
semigroup of S fully generated by
x,Y, % in the Case I
x, U, & in the Case II and III
where if z or u is 1, it is omitted. By the definition of p,, any two
elements of G, are p,related, that is,
G =S, if by, b; € S,
Obviously the restriction of ¢ to G; is an s-congruence on G;. In
the consequence of Proposition 2, ¢ becomes universal on G;. There-
fore b;0b;4, (1=1, +++, m—1) in S,. By transitivity we get acb. This
completes the proof of the theorem.
4. Remark. We can prove Proposition 1 in another way: With
using Lemmas 1 and 2, we prove
Lemma 4., Let A=x, <<+ x;++-2,€SF. Then
Ax 0%, oo B} o0 2, 00;A.
Let W be a word in F. The sum of all the exponents of a letter
x in W is called the total exponent of x in W. For example, if
W=ayz’x2’, the total exponent of  in W is 3. Fixing the order
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of the letters @, ---, a,, the total exponent of a; in W is denoted

by t;. If AedF, all t; are positive integers. We define 7(A) as follows:
T(A)z(tlv % tn)’ Ae .

Also if ©(B)=(t], «+-, t;), then t(A)=7(B) iff t;=t] (1=1, -+, n). If

Ae S, some t; may happen to be 0.

From Lemma 4, immediately

Lemma 5. Let AcS;Z, Ue S, If c(Z)=7(U), then AZp AU
and ZApUA.

Now, define a congruence £ on & as follows:

AéB iff 7(A)=7(B).
7(F) is the direct sum of the semigroups I of all positive integers
with usual vector addition:

(F)=1DID -+ - DI.

"
Clearly 7 is a homomorphism of & onto z(¥), and 7(¥) is a com-
mutative archimedean semigroup and hence idempotent-indecomposable.
Suppose A, Be F and AéB. Then by Lemma 5,
ApAApABpBApBBpB.

Thus we have proved £¢<p, from which we can conclude that o is
universal on .

Also we add that the subsemigroup G of S fully generated by a
finite number of elements of S is closely related to the concept of
P-subsemigroup due to Yamada [6, 7], and to that of N-classes due
to Petrich [2].
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