No. 10]

167. Another Proof of a Theorem Concerning the Greatest Semilattice-Decomposition of a Semigroup

By Takayuki TAMURA

University of California, Davis, Calif. U.S.A. (Comm. by Zyoiti SUETUNA, M.J.A., Dec. 12, 1964)

1. Introduction. For any semigroup S, consider any congruence ρ on S such that S/ρ is a semilattice, i.e., a commutative idempotent semigroup. Such a ρ is called a semilattice-congruence or simply s-congruence. As is well known, there is the smallest s-congruence ρ_0 on S in the sense of inclusion [1-7]. Let $L=S/\rho_0$ and let S_{α} , $\alpha \in L$, be a congruence class modulo ρ_0 :

$$S = \bigcup_{\alpha \in L} S_{\alpha}, \quad S_{\alpha} \cap S_{\beta} = \square, \quad \alpha \neq \beta.$$

If the cardinal number |L| of L is exactly 1, that is, ρ_0 is the universal relation on S, then S is called s-indecomposable; if |L| > 1, then S is s-decomposable. The partition of S due to ρ_0 is called the greatest s-decomposition of S, and S/ρ_0 is called the greatest s-homomorphic image of S.

Theorem. In the greatest s-decomposition of a semigroup S, each congruence class S_{σ} is s-indecomposable.

This theorem was proved by the author [4] and recently stated by Petrich in [2] without proof. The purpose of this paper is to give a proof of this theorem from somewhat different point of view. Proposition 1 below can be proved by using the above theorem, but here we are going to prove Proposition 1 directly and then to prove the above theorem by using it.

2. Preliminaries. Let a_1, \dots, a_n be elements of a semigroup S. If an element a of S is the product of all of a_1, \dots, a_n admitting repeated use, then a is said to be fully generated by a_1, \dots, a_n . The set G of all the elements of S which are fully generated by a_1, \dots, a_n is a non-empty subsemigroup of S. G is called the subsemigroup of S fully generated by a_1, \dots, a_n .

Let \mathcal{F}_0 be the free semigroup generated by n distinct letters a_1, \dots, a_n in the usual sense, and \mathcal{F} be the subsemigroup of \mathcal{F}_0 fully generated by a_1, \dots, a_n . \mathcal{F} is composed of all words any one of which contains all of a_1, \dots, a_n .

Let ρ be any s-congruence on \mathcal{F} . We denote by φ the natural mapping of \mathcal{F} upon \mathcal{F}/ρ , that is, for $A \in \mathcal{F}$, $A\varphi$ of \mathcal{F}/ρ is the congruence class modulo ρ containing A. For convenience of the

proof, we define the partial ordering \leq in the semilattice \mathcal{G}/ρ in the usual way:

 $A\varphi \ge B\varphi$ iff $(B\varphi)(C\varphi) = A\varphi$ for some $C \in \mathcal{F}$ then $A\rho B$ iff $A\varphi = B\varphi$.

The letters x_i in Lemmas 1 and 3 below denote some of a_1, \dots, a_n ; and x_i and x_j may happen to be the same.

Lemma 1. Let $x_1 \cdots x_i \cdots x_m$ be a word in \mathcal{F} . Then

$$x_1 \cdots x_{i-1} x_i x_{i+1} \cdots x_m \rho x_i x_{i+1} \cdots x_m x_1 \cdots x_{i-1}, \quad 1 \leq i \leq m.$$

Proof. Let $X=x_1\cdots x_{i-1}x_ix_{i+1}\cdots x_m$, $Y=x_ix_{i+1}\cdots x_mx_1\cdots x_{i-1}$, and let $Z=x_1\cdots x_{i-1}$, $U=x_i\cdots x_m$. Then ZUZ, $UZU\in \mathcal{F}$ and we have

$$X\rho X^{\$} = (ZUZ)(UZU)\rho(UZU)(ZUZ)$$
 by commutativity $= Y^{\$}\rho Y$. q.e.d.

Let $A \in \mathcal{F}$ and let x be any one of the letters a_1, \dots, a_n . We define words Ax and xA in \mathcal{F} as follows:

If $A = x_1 \cdots x_m$, then $Ax = x_1 \cdots x_m x$, $xA = xx_1 \cdots x_m$. More generally, we can define words AZ and ZA in \mathcal{F} for $Z \in \mathcal{F}_0$. Let $Z = z_1 \cdots z_k$ where z_1, \dots, z_k are some of a_1, \dots, a_n .

$$AZ = x_1 \cdots x_m z_1 \cdots z_k, \qquad ZA = z_1 \cdots z_k x_1 \cdots x_m.$$

Clearly A(ZU) = (AZ)U, (ZU)A = Z(UA), Z, $U \in \mathcal{F}_0$. According to Lemma 1, we see $Ax \rho xA$ and $AZ \rho ZA$, for $Z \in \mathcal{F}_0$.

Lemma 2. Let $A, B \in \mathcal{F}$, and x be any one of a_1, \dots, a_n . Then $A \rho B$ implies $Ax \rho Bx$ and $xA \rho xB$.

Proof. With using $A\varphi \ge B\varphi$ and its compatibility, we have $(Ax)\varphi = ((Ax)\varphi)^2 = (AxAx)\varphi = (A\varphi)((xAx)\varphi) \ge (B\varphi)((xAx)\varphi)$

$$=(BxAx)\varphi=(Bx)\varphi((Ax)\varphi)\geq (Bx)\varphi$$
.

In the same way, we have $(Bx)\varphi \ge (Ax)\varphi$. The dual case is obtained immediately by the above remark.

Lemma 3. Again let x be any one of a_1, \dots, a_n . Let $A \in \mathcal{F}$. Then $Ax \rho A$ and $xA \rho A$.

Proof. Since $A\varphi = A^2\varphi$, by Lemma 2,

$$(Ax)\varphi = (AAx)\varphi = (A\varphi)((Ax)\varphi) \ge A\varphi$$
.

By Lemma 1, we can find $B \in \mathcal{F}_0$ such that $A\varphi = (xB)\varphi$.

$$A\varphi = A^{3}\varphi = (A\varphi)(A\varphi)(A\varphi) = (A\varphi)((xB)\varphi)(A\varphi)$$
$$= ((Ax)\varphi)((BA)\varphi) \ge (Ax)\varphi.$$

Thus we have $(Ax)\varphi = A\varphi$, or $Ax \rho A$.

3. Propositions and Theorems.

Proposition 1. \mathcal{F} is s-indecomposable.

Proof. Recalling that ρ is any s-congruence on \mathcal{F} . Let A and B be any elements of \mathcal{F} . According to Lemma 3,

$$Ax \rho A$$
 if x is any one of a_1, \dots, a_n .

Immediately we have

 $AB \rho A$ for all $A, B \in \mathcal{F}$ and hence $A \rho AB \rho BA \rho B$.

Thus the proposition has been proved.

As the application of Proposition 1, we have

Proposition 2. Let S be any semigroup, a_1, \dots, a_n be elements of S, and G be the subsemigroup of S fully generated by a_1, \dots, a_n . Then G is s-indecomposable.

Proof. Let G' be an s-homomorphic image of G, and \mathcal{F} be the semigroup fully generated by the letters a_1, \dots, a_n , which is discussed in the preceding section. Since \mathcal{F} is homomorphic onto G, G' is a homomorphic image of the greatest s-homomorphic image of \mathcal{F} . On the other hand, \mathcal{F} is s-indecomposable by Proposition 1 and hence |G'|=1. Thus G is s-indecomposable.

Proof of Theorem. Let ρ_0 be the smallest s-congruence on S so that $S = \bigcup_{\alpha \in S/\rho_0} S_{\alpha}$. Let σ be the smallest s-congruence on S_{α} . We are to prove that σ is universal on S_{α} . Suppose $a \rho_0 b$ and $a, b \in S_{\alpha}$. Then there are a finite number of elements

$$a=b_1, b_2, \cdots, b_{m-1}, b_m=b$$

such that b_i and b_{i+1} are related in such a fashion that one of the following cases (1), (2), and (3) happens [5, 6, 7].

Case I
$$\begin{cases} b_i = zxyu \\ b_{i+1} = zyxu \end{cases}$$
 for some $z, u \in S^1; x, y \in S$ $\begin{cases} b_i = zx^2u \\ b_{i+1} = zxu \end{cases}$ for some $z, u \in S^1; x \in S$ Case III $\begin{cases} b_i = zxu \\ b_{i+1} = zxu \end{cases}$ for some $z, u \in S^1; x \in S$

where $S^1=S\cup\{1\}$, 1 being the adjoined two-sided identity and where x, y, z, u depend on i. Now G_i is defined as follows: G_i is the subsemigroup of S fully generated by

$$x, y, z, u$$
 in the Case I
 x, u, z in the Case II and III

where if z or u is 1, it is omitted. By the definition of ρ_0 , any two elements of G_i are ρ_0 -related, that is,

$$G_i \subseteq S_{\alpha}$$
 if $b_i, b_{i+1} \in S_{\alpha}$.

Obviously the restriction of σ to G_i is an s-congruence on G_i . In the consequence of Proposition 2, σ becomes universal on G_i . Therefore $b_i \sigma b_{i+1}$ $(i=1, \dots, m-1)$ in S_{σ} . By transitivity we get $a \sigma b$. This completes the proof of the theorem.

4. Remark. We can prove Proposition 1 in another way: With using Lemmas 1 and 2, we prove

Lemma 4. Let
$$A = x_1 \cdots x_i \cdots x_m \in \mathcal{F}$$
. Then $Ax_i \rho x_1 \cdots x_i^2 \cdots x_m \rho x_i A$.

Let W be a word in \mathcal{F} . The sum of all the exponents of a letter x in W is called the total exponent of x in W. For example, if $W=x^2yz^2xz^2$, the total exponent of x in W is 3. Fixing the order

of the letters a_1, \dots, a_n , the total exponent of a_i in W is denoted by t_i . If $A \in \mathcal{F}$, all t_i are positive integers. We define $\tau(A)$ as follows:

$$\tau(A) = (t_1, \dots, t_n), A \in \mathcal{F}.$$

Also if $\tau(B)=(t'_1,\dots,t'_n)$, then $\tau(A)=\tau(B)$ iff $t_i=t'_i$ $(i=1,\dots,n)$. If $A\in\mathcal{F}_0$, some t_i may happen to be 0.

From Lemma 4, immediately

Lemma 5. Let $A \in \mathcal{F}$; Z, $U \in \mathcal{F}_0$. If $\tau(Z) = \tau(U)$, then $AZ \rho AU$ and $ZA \rho UA$.

Now, define a congruence ξ on \mathcal{F} as follows:

$$A \xi B$$
 iff $\tau(A) = \tau(B)$.

 $\tau(\mathcal{F})$ is the direct sum of the semigroups I of all positive integers with usual vector addition:

$$\tau(\mathcal{F}) = \underbrace{I \oplus I \oplus \cdots \oplus I}_{n}.$$

Clearly τ is a homomorphism of \mathcal{F} onto $\tau(\mathcal{F})$, and $\tau(\mathcal{F})$ is a commutative archimedean semigroup and hence idempotent-indecomposable. Suppose $A, B \in \mathcal{F}$ and $A \notin B$. Then by Lemma 5,

$$A \rho A A \rho A B \rho B A \rho B B \rho B$$
.

Thus we have proved $\xi \subseteq \rho$, from which we can conclude that ρ is universal on \mathcal{F} .

Also we add that the subsemigroup G of S fully generated by a finite number of elements of S is closely related to the concept of P-subsemigroup due to Yamada [6, 7], and to that of N-classes due to Petrich [2].

References

- [1] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups, vol. 1. Math. Surveys, no. 7, Amer. Math. Soc., Providence, R. I. (1961).
- [2] M. Petrich: The maximal semilattice decomposition of a semigroup. Bull. Amer. Math. Soc., 69, 342-344 (1963).
- [3] T. Tamura and N. Kimura: Existence of greatest decomposition of a semi-group. Kōdai Math. Sem. Rep., 7, 83-84 (1955).
- [4] T. Tamura: The theory of construction of finite semigroups I. Osaka Math. Jour., 8, 243-261 (1956).
- [5] —: Operations on binary relations and their applications. Bull. Amer. Math. Soc., 70, 113-120 (1964).
- [6] M. Yamada: On the greatest semilattice decomposition of a semigroup. Kōdai Math. Sem. Rep., 7, 59-62 (1955).
- [7] —: The structure of separative bands. Dissertation (1962).