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36. On Closures of Vector Subspaces. 11

By Shouro KASAHARA
Kobe University
(Comm. by Kinjir6 KUNUGI, M.J.A., Feb. 12, 1965)

5. We shall prove in this section the following theorem.”

THEOREM 6. Let M be an infinite dimenstonal vector subspace
of a wvector space E, and let 7, be a locally convex Hausdorff
topology on M. Let us denote by M’ the dual of M for the topology
7., and by codim (M') the codimension of M' in M*.

1° If codim (M) is infinite, then codim (M )=<2°%™ ™) mplies
that for every projection p of E onto M, there exists a locally
convex Hausdorff topology T on E such that M is dense in E for
the topology T and p s continuous for the topologies T and t,.

If codim (M) s finite, then codim (M)=<codim (M') implies the
same conclusion.

Conversely

2° If there exists a locally convex Hausdorff topology v on E
such that M is dense in E for the topology T and a projection p
of E onto M is continuous for the topologies © and T, then etther
codim (M) <24 M) gp codim (M) =codim (M") according as codim (M)
18 tnfinite or finite.

Proof of 1°. Suppose first that the dimension of the vector sub-
space N=p7%0) is infinite. The inequality dim (N )=2%%™ " ghows
that there exists a vector subspace N’ of N* such that dim(N')=
codim (M') and the dual system (NN, N') is separated.” Let B, be a
base of N’; then, since dim (N')<codim (M’), we can find a linearly
independent subset B of an algebraic supplement of M’ in M* with
cardinal number dim (N’). Let ¢ be a one-to-one mapping of B,
onto B. We define, for each %’e By, a linear functional %' on E
by setting

a7’ — <(l?, ¢(y,)> fOI' xeM’
@y >_{<x, > for xe N.

1) This is a generalization of Theorem 1 of S. Kasahara: Locally convex
metrizable topologies which make a given vector subspace dense. Proc. Japan
Acad., 40, 718-722 (1964); to this paper, corrections should be made as follows:
Page 718, ‘arized’ should read ‘arisen’, and page 719, ‘powder’ should read ‘power’.

2) See Lemma 4 of S. Kasahara: On closures of vector subspaces, I. Proc.
Japan Acad., 40, 723-727 (1964); the preceding sentence of Lemma 4 which begins
with the word ‘Consequently’ should read as follows: Consequently, if the dual
system (E, E’) is separated, we have dim (E)< -+«
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Then the weakest topology = on E which makes the mapping p and
linear functionals %'(y’ € By,) continuous possesses the required pro-
perty. To see this, it will suffice to prove that = is a Hausdorff
topology which makes M dense in E. It is easy to see that the
mapping x'—a'op of M’ into E* is continuous for the weak topologies
oM', M) and o(E*, E). Therefore, if A" is a o(M’', M)-compact
subset of M’, then A'op={x'op; 2’ € A’} is a o(E*, E)-compact subset
of E*. Consequently, for every closed convex and circled neighbor-
hood U of 0e€ M for the topology 7,, we have
@ (U)° =@ (U°°)°=(U°p)°°=U°op.

It follows that the dual E’ of E for the topology 7 is the vector
subspace of E* spanned by the set {x'op; '€ M'}—{¥’; ¥’ € By}. Now
to prove that the topology 7 is Hausdorff, it will be sufficient to
show that there exists, for each non-zero element x of N, an ele-
ment '€ E’' such that <z, 2">=0. But this is an immediate con-
sequence of the separatedness of the dual system (N, N’): in fact,
we can find an element %’ € By for which we have 0x<x, y'>=<{x, ¥">.
It remains only to prove that the vector subspace M is dense in E
for the topology 7. Let x; be an element of E’ which vanishes on
M. Then we can find «'e M’ and ¥, -+, y,€ By such that xz/=

a’op+ él,@:, and hence we have, for every xe M,
i=1
0=<w, @y =<, a'op+ 23 AFO=<u, @'+ 3 2p(yi)-

In other words, the linear functional '+ ZLga(y) on M is the zero
element of M*, and so we have 2'=0 and 21_- «+=2,=0, since the
set {«', (1), «++, ¢(y,)} is linearly independent. Consequently we
have M °AE"={O}, which shows that M is dense in E for the topo-
logy .

Suppose now that the dimension of the vector subspace N is
finite. Then we have dim (N *)=dim (N)=codim (M’), and hence it
suffices to take N'=N* in the proof of the case where dim(N) is
infinite.

Proof of 2°. Suppose that the dimension of the vector subspace
N=p"%0) is infinite. Let E’ be the dual of E for the topology 7,
and let 2’ E', A/CE’. We denote by 2’|, the restriction of «’ to
M, and by A’|y the set of all restrictions 2’|, of '€ A" to M.

Let N’ be an algebraic supplement of N° in E’. We shall show
that M'~(N'|,,)={0}. Let 2’e M'~(N'|y). Then since &' € M’, we
can write ' =(2"op)|,. On the other hand, since 2’ N'’|,, we have
2'=ux]|, for some xz/e N’. Hence we have 2’op=ux;, because the
vector subspace M is dense in E. But then, since 2’ope N° and
xie N', it follows that 2’op=0, and so #'=0. Thus M'~(N'|y)=
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{0}. Consequently we have

codim (M) =dim (N’ |,). (1)
Now it is clear that the mapping ¥'—¥’|, of N’ onto N'|, is linear.
Moreover, this mapping is one-to-one, since M is dense in E. There-
fore we have

dim (N’ |,)=dim (N'). (2)
Since the dual system (F, E’) is separated, for every non-zero element
x of N, we can find an #’€ E’ such that <z, 2’>0; but then we
can write ' =2'+v', where 2’€ N° and 9’ € N’, and hence we have
{x, y">=<x, 2’ +y">>x0, which shows that the dual system (N, N') is
separated. Therefore we have

dim (N)<24m &), (3)

Thus, combining (1), (2), and (3), we have the desired conclusion.

Now suppose that the dimension of N is finite. Then in the

proof of the case where dim (V) is infinite, we have

dim (N")=dim (N) (4)
instead of the inequality (3). Thus we have dim (N)=codim (M)
from (1), (2), and (4).

REMARK. More generally, theorem 6 is valid for linear mappings
u of E onto M satisfying the following condition:

(*) w(M)=M and u(0)~M={0}.

In fact, for every linear mapping w of E into M satisfying the
condition (x), we have w%0)+M=F; let p be the projection of E
onto M such that p~%0)=u"*0); then we have (u|y,)op=wu, where
% |, denotes the restriction of w to M. Let 7, be the weakest topology
on M which makes |, continuous as a mapping onto M with the
topology 7,, and let = be a locally convex topology on E. Then
since u=(u |,)op, the mapping « is continuous for the topologies =
and 7, if and only if p is continuous for the topologies = and z,.
Furthermore, the dual of M for the topology 7, is isomorphic to the
dual of M for the topology 7,. Therefore, the above mentioned
statement follows from Theorem 6.

As a corollary of Theorem 6, we have the following

THEOREM 5. Let M be a vector subspace of an infinite dimen-
sional vector space E. If dim (E)<2%, where a=2%""  then for
every algebraic supplement N of M in E, there exists a locally
convexr Hausdorff topology on E which makes M dense in E and
N closed.

Proof. Let B be a base of M. For each xc B, we define a
linear functional &’ on M by setting, for every y€ B,

~ o 1 if w—_—y,
<y,x>_{0 if xy.
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Denote by M’ the vector subspace of M* spanned by the set {x';
x€ B}, We have then dim (M')=dim (M)< 2% =dim (M*). There-
fore codim (M')=dim(M*), and hence we have by the assumption
codim (M) =dim (F)< 2% =234 (4" — Qeodim (") Qince codim (M') is infi-
nite, applying Theorem 6 for the weak topology o(M, M’), we have
the conclusion.

The following corollary is a consequence of Theorem 3.

COROLLARY. Let M be an infinite dimensional vector subspace
of a wector space K. Then for every wector subspace F2M of
dimension =<2, where a=24="_qand for every algebraic supplement
N of M in F, there exists a locally convex Hausdorff topology on
E for which we have M=F and N=N.



