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Kobe University

(Comm. by Kinjir6 KUNUGI, lg.J.A., Feb. 12, 1965)

5. We shall prove in this section the following theorem.)

THEOREM 6. Let M be an infinite dimensional vector subspace
of a vector space E, and let Vo be a locally convex Hausdorff
topology on M. Let us denote by M’ the dual ofM for the topology
Vo, and by codim (M’) the codimension of M’ in M*.

1 If codim (M) is infinite, then codim (M)-_< 2im (’) implies
that for every projection p of E onto M, there exists a locally
convex Hausdorff topology v on E such that M is dense in E for
,the topology v and p is continuous for the topologies v and Vo.

If codim (M) is finite, then codim (M) <__ codlin (M’) implies the
same conclusion.

Conversely
2 If there exists a locally convex Hausdorff topology on E

such that M is dense in E for the topology v and a projection p
of E onto M is continuous for the topologies v and Vo, then either
codim (M) 2m (’) or codim (M) =_< codim (M’) according as codlin (M)
is infinite or finite.

Proof of 1 Suppose first that the dimension of the vector sub.-
space N-p-(O) is infinite. The inequality dim(N)__<2m(’) shows
that there exists a vector subspace N’ of N* such that dim(N’)=<_
codim(M’) and the dual system (N, N’) is separated.:) Let Bg, be a
base of N’; then, since dim(N’)=<codim(M’), we can find a linearly
independent subset B of an algebraic supplement of M’ in .M* with
cardinal number dim(N’). Let be a one-to-one mapping of Bg,
onto B. We define, for each y’e Bg,, a linear functional y’ on E
by setting

/(x, (y’)) for x e M,’)-((x, y’) for x e N.

1) This is a generalization of Theorem 1 of S. Kasahara: Locally convex
metrizable topologies which make a given vector subspace dense. Proc. Japan
Acad., 40, 718-722 (1964); to this paper, corrections should be made as follows:
:Page 718, ’arized’ should read ’arisen’, and page 719, ’powder’ should read ’power’.

2) See Lemma 4 of S. Kasahara: On closures of vector subspaces, I. Proc.
Japan Acad., 40, 723-727 (1964); the preceding sentence of Lemma 4 which begins
with the word ’Consequently’ should read as follows: Consequently, if the dual
system (E, Ep) is separated, we have dim (E)=<...,
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Then the weakest topology v on E which makes the mapping p and
linear functionals ’(y’e B,) continuous possesses the required pro-
perty. To see this, it will suffice to prove that v is a Hausdorff
topology which makes M dense in E. It is easy to see that the
mapping x’---.x’op of M’ into E* is continuous for the weak topologies
a(M’, M) and a(E*, E). Therefore, if A’ is a a(M’, M)-compact
subset of M’, then A’op-{x’op; x’e A’} is a a(E*, E)-compact subset
of E*. Consequently, for every closed convex and circled neighbor-
hood U of 0 e M for the topology v0, we have

(-( V))O (-( VOo))o _( Voo)OO Voo.
It follows that the dual E’ of E for the topology v is the vector
subspace of E* spanned by the set {x’op; x’ e M’}{’; y’ e B,}. Now
to prove that the topology v is Hausdorff, it will be sufficient to
show that there exists, for each non-zero element x of N, an ele-
ment x’eE’ such that (x,x’#O. But this is an immediate con-
sequence of the separatedness of the dual system (N, N’): in fact,
we can find an element y’ e B, for which we have O# (x, y’-(x, ’.
It remains only to prove that the vector subspace M is dense in E
for the topology v. Let x be an element of E’ which vanishes on
M. Then we can find x’eM’ and y;, ...,y’eB, such that x0-

x’op+ ,, and hence we have, for every x e M,
i=l

o- (x, X’o)- (x, x’ + (x, x’+
i=l i=l

In other words, the linear functional x’/ , 2(y) on M is the zero
i=l

element of M*, and so we have x’-O and 2=...-2.-0, since the
set {x’, (y;), ..., (y’)} is linearly independent. Consequently we
have ME’-{O}, which shows that M is dense in E for the topo-
logy v.

Suppose now that the dimension of the vector subspace N is
finite. Then we have dim (N*)-dim (N)_-_codim (M’), and hence it
suffices to take N’-N* in the proof of the case where dim(N) is
infinite.

Proof of 2. Suppose that the dimension of the vector subspace
N=p-(0) is infinite. Let E’ be the dual of E for the topology
and let x’e E’, A’_E’. We denote by x’ ] the restriction of x’ to
M, and by A’ I the set of all restrictions x’ I of x’e A’ to M.

Let N’ be an algebraic supplement of N in E’. We shall show
that M’.(N’ !)-{0}. Let x’e M’(N’ I). Then since x’e M’, we
can write x’-(x’op)I. On the other hand, since x’ e N’ I, we have

because thex’-xl or some xeN’ Hence we have x’op-x,
vector subspace M is dense in E. But then, since x’ope N and
x[ e N’, it follows that x’op-O, and so x’-0. Thus M’(N’
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{0}. Consequently we have
codim (M’) >__ dim (N’ I). 1 )

Now it is clear that the mapping y’-y’ I of N’ onto N’ ] is linear.
Moreover, this mapping is one-to-one, since M is dense in E. There-
fore we have

dim (N’ I)-- dim (Y’). 2
Since the dual system (E, E’) is separated, for every non-zero element
x of N, we can find an ’e E’ such that (, ’)#0; but then we
can write x’--z’/y’, where z’e N and y’e N’, and hence we have
(, y’)=(x,z’+y’)#O, which shows that the dual system (N,N’) is
separated. Therefore we have

dim (N)_-< 2m (g’. 3 )
Thus, combining (1), (2), and (3), we have the desired conclusion.

Now suppose that the dimension of N is finite. Then in the
proof of the case where dim (N) is infinite, we have

dim (N’)-dim (N) 4
instead of the inequality (3). Thus we have dim(N)=<_codim(M’)
from (1), (2), and (4).

RMARK. More generally, theorem 6 is valid for linear mappings
u of E onto M satisfying the following condition:

(,) u(M)=M and u-(0)---M= {0}.
In fact, for every linear mapping u of E into M satisfying the

condition (,), we have u-(O)/M=E; let p be the projection of E
onto M such that p-(0)=u-(0); then we have (ul,)op=u, where
u I, denotes the restriction of u to M. Let v be the weakest topology
on M which makes u 1 continuous as a mapping onto M with the
topology v0, and let v be a locally convex topology on E. Then
since u=(u I)op, the mapping u is continuous for the topologies
and v0 if and only if p is continuous for the topologies v and
Furthermore, the dual of M for the topology is isomorphic to the
dual of M for the topology v0. Therefore, the above mentioned
statement follows from Theorem 6.

As a corollary of Theorem 6, we have the following
THEOREM 5’. Let M be a vector subspace of an infinite dimen-

sional vector space E. If dim (E)=<_2a, where a=2’m(), then for
every algebraic supplement N of M in E, there exists a locally
convex Hausdorff topology on E which makes M dense in E and
N closed.

Proof. Let B be a base of M. For each xeB, we define a
linear functional x’ on M by setting, for every y e B,

1 if x-y,(y, x’)-
0 if x =y.
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Denote by M’ the vector subspace of M* spanned by the set {x’;
x e B}. We have then dim (M’)-dim (M)< 2 ()-dim (M*). There-
fore codim(M’)-dim(M*), and hence we have by the assumption
codim (M) =< dim (E) =< 2a- 2m (*) 2c (’). Since codim (M’) is infi-
nite, applying Theorem 6 for the weak topology a(M, M’), we have
the conclusion.

The following corollary is a consequence of Theorem 3.
COROLLARY. Let M be an infinite dimensional vector subspace

of a vector space E. Then for every vector subspace F_M of
dimension <=2, where a-2 , and for every algebraic supplement
N of M in F, there exists a locally convex Hausdorff topology on
E for which we have M=F and N=N.


