21. A Certain System of Parameters in a Local Ring

By Yasuo Kinugasa
Department of Mathematics, Tokyo Metropolitan University
(Comm. by Zyoiti Suetuna, m.J.A., Feb. 12, 1965)

Let R be a (noetherian) local ring with maximal ideal \mathfrak{M} : denoted by (R, \mathfrak{M}). First we set the following

Definition. In a local ring (R, \mathfrak{M}) we call a system of parameters a_{1}, \cdots, a_{r} of R satisfying the conditions; $a_{i} \notin \mathfrak{M}^{2}+\sum_{j<i} a_{j} R(1 \leq i \leq r)$ a special system of parameters of R, where $r=$ Alt. $R^{1)}$ (altitude of $R=$ Krull dimension of R).

In this note, by using this notion of a special system of parameters, we shall prove the following:

Theorem. In a local ring (R, \mathfrak{M}) the following three conditions are equivalent to each other:
(1) R is a Macaulay local ring.
(2) If a_{1}, \cdots, a_{r} is a system of parameters of R, then $h d_{R} \sum_{i=1}^{r} a_{i} R^{1}<\infty$.
(3) There exists a special system of parameters a_{1}, \cdots, a_{r} such that $h d_{R} \sum_{i=1}^{r} a_{i} R<\infty$.
For the proof of the theorem we need the following lemmas.
Lemma 1. Let \mathfrak{A} be an ideal of a local ring (R, \mathfrak{M}) and $\mathfrak{P}_{1}, \cdots, \mathfrak{P}_{n}$ be prime ideals of R. If \mathfrak{B} is an ideal of R such that $\mathfrak{B} \nsubseteq \mathfrak{A}$ and $\mathfrak{B} \nsubseteq \bigcup_{j=1}^{n} \mathfrak{P}$, then $\mathfrak{B} \nsubseteq \mathfrak{A} \cup \mathfrak{B}_{1} \cup \cdots \cup \mathfrak{B}_{n}$.

Proof. See ${ }^{j=1}$ 2, p. 70. Prop. 2].
Lemma 2. In a local ring (R, \mathfrak{M}) there exists a special system of parameters.

Proof. We shall show how to construct inductively such a system of parameters. It is obvious if Alt. $R=0$. Let $r=\mathrm{Alt} . R \geq 1$ and let $\mathfrak{F}_{1}, \cdots, \mathfrak{P}_{n}$ be the minimal prime divisors of zero. Take a_{1} such that $a_{1} \in \mathfrak{M}, a_{1} \notin \mathfrak{M}^{2}$ and $a_{1} \notin \mathfrak{F}_{i}(i=1, \cdots, n)$ by Lemma 1. Then the height of $a_{1} R$ is one. After choosing $a_{i}, \cdots, a_{t}(t<r)$, we can take a_{t+1} in M such that $a_{t+1} \notin \mathbb{M}^{2}+\sum_{j=1}^{t} a_{i} R$ and $a_{t+1} \notin \mathfrak{O}_{i}(i=1, \cdots, m)$ by Lemma 1 , where $\mathfrak{\Omega}_{j}$'s are the minimal prime divisors of $\sum_{j=1}^{t} a_{j} R$. It is obvious that the height of $\sum_{j=1}^{t+1} a_{j} R$ is $t+1$. Thus, we obtain a special system of parameters a_{1}, \cdots, a_{r} of R.

Remark. If a_{1}, \cdots, a_{r} is a special system of parameters of R

[^0]then $a_{1}, \cdots, a_{t-1}, a_{t+1}, a_{t}, a_{t+2}, \cdots, a_{r}$ is also a special system of parameters of R. Consequently, if a_{1}, \cdots, a_{r} is a special system of parameters of R, then $a_{\sigma_{1}}, \cdots, a_{\sigma_{r}}$ is also a special system of parameters of R for any parmutation σ of the set $\{1,2, \cdots, r\}$.

Lemma 3. Let a_{1}, \cdots, a_{r} be a special system of parameters of a local ring (R, \mathfrak{M}) and $\mathfrak{Q}=\sum_{j=1}^{r} a_{j} R$. If $0: \mathfrak{M}=0$, then there exists a special system of parameters $a_{1}^{\prime}, \cdots, a_{r}^{\prime}$, with a_{1}^{\prime} as a non-zerodivisor in R, and such that $\mathfrak{N}=\sum_{i} a_{i}^{\prime} R$.

Proof. 0 : $\mathfrak{M}=0$ implies $0: \mathfrak{Q}=0$ since \mathfrak{Q} is an \mathfrak{M}-primary ideal. Then we have b in \mathfrak{Q} such that $b=s_{1} a_{1}+\cdots+s_{r} a_{r}\left(s_{j} \in R\right), b \notin \mathbb{M}^{2}$ and b is a non zero divisor in R by Lemma 1. We may assume $s_{r} \notin \mathfrak{M}$ since $b \notin \mathfrak{M}^{2}$ and $a_{1}, \cdots, a_{j-1}, a_{r}, a_{j+1}, \cdots, a_{r-1}$ is a special systenı of parameters of R (Remark to Lemma 2). It is obvious that $\Omega=$ $\sum_{j=1}^{r-1} a_{j} R+b R$. If $b=s_{1} a_{1}+\cdots+s_{r} a_{r} \in \mathfrak{M}^{2}+\sum_{j=1}^{r-1} a_{j} R$ then $s_{r} a_{r} \in \mathfrak{M}^{2}+$ $\sum_{j=1}^{r-1} a_{j} R$, hence we have $a_{r} \in \mathbb{M}^{2}+\sum_{j=1}^{r-1} a_{j} R$ since s_{r} is a unit in R. This
 system of parameters $a_{1}, \cdots, a_{r-1}, b$ of R. Put $a_{1}^{\prime}=b, a_{i}^{\prime}=a_{i}(i=$ $2, \cdots, r-1)$ and $a_{r}^{\prime}=a_{1}$, then $a_{1}^{\prime}, \cdots, a_{r}^{\prime}$ is a special system of parameters of R by Remark to Lemma 2.

Lemma 4. In a local ring (R, \mathfrak{M}), if $0: \mathfrak{M} \neq 0$, then $h d_{R} M=\infty$ for every finite R-module M which is not free.

Proof. See [3, (28.1)].
Lemma 5. Let \mathfrak{Q} be an ideal of a local ring (R, \mathfrak{M}) and x be an element of Ω which is not contained in \mathbb{M}^{2}. Assume furthermore that x is not a zero-divisor in R. Then we have $h d_{R} \mathfrak{Z}=1+h d_{R / x R}$ $(\mathfrak{Q} / x R)$.

Proof. See [3, (27.4)].
Lemma 6. Let (R, \mathfrak{M}) be a local ring. If x_{1}, \cdots, x_{d} is an R sequence $\left(x_{j} \in \mathfrak{M}\right)$, then $h d_{R} \sum_{j=1}^{d} x_{j} R<\infty$.

Proof. We shall prove this lemma by induction on d. If $d \leq 1$ the proof is obvious. Let $d>1$ and $\operatorname{syz}_{R}^{1}\left(\sum_{j=1}^{d} x_{j} R\right)=\left\{\sum_{j=1}^{d} c_{j} X_{j} \mid \sum_{j=1}^{d} c_{j} x_{j}=\right.$ $0, c_{j} \in R$ and X_{j} 's are indeterminates $\}$. Furthermore define R-homomorphism $\varphi: \operatorname{syz}_{R}^{1}\left(\sum_{j=1}^{d} x_{j} R\right) \rightarrow R$ by $\varphi\left(\sum_{j=1}^{d} c_{j} X_{j}\right)=c_{d}$. We have immediately Image $\varphi=\sum_{j=1}^{d-1} x_{j} R$ and Kernel $\varphi=\operatorname{syz}_{R}^{1}\left(\sum_{j=1}^{d-1} x_{j} R\right)$ since $\left(\sum_{j=1}^{d-1} x_{j} R\right)$: $x_{d} R=\left(\sum_{j=1}^{d-1} x_{j} R\right)$. Thus we have the following exact sequence:

$$
0 \rightarrow \operatorname{syz}_{R}^{1}\left(\sum_{j=1}^{d-1} x_{j} R\right) \rightarrow \mathrm{syz}_{R}^{1}\left(\sum_{j=1}^{d} x_{j} R\right) \rightarrow \sum_{j=1}^{d-1} x_{j} R \rightarrow 0
$$

By our inductive assumption we have $h d_{R} \sum_{j=1}^{d-1} x_{j} R<\infty$ and

$$
h d_{R}\left(\operatorname{syz}_{R}^{1}\left(\sum_{j=1}^{d-1} x_{j} R\right)\right)<\infty
$$

 $h d_{R} \sum_{j=1}^{d} x_{j} R<\infty$.

Proof of the theorem
$(1) \Rightarrow(2)$: \quad The proof follows from Lemma 6.
$(2) \Rightarrow(3)$: The proof is obvious.
$(3) \Rightarrow(1)$: We shall complete the proof by using induction on the altitude of R. If Alt. $R=0, R$ is always a Macaulay local ring. Let $r=$ Alt. $R \geq 1$ and $\mathfrak{Q}=\sum_{j=1}^{r} a_{j} R$. If $0: \mathfrak{M} \neq 0$, by Lemma $4 \mathfrak{Q}$ is a free module since $h d_{R} \mathfrak{Q}<\infty$. On the other hand we have ($0: \mathfrak{M}$) $\mathfrak{Q}=$ 0 and $0: \mathfrak{M} \neq 0$. Hence we conclude $\mathfrak{Q}=0$, which contradicts to the assumption. Thus we have $0: \mathfrak{M}=0$. By the fact $0: \mathfrak{M}=0$ we may assume that a_{1} is a non zero divisor in R (Lemma 3). It is obvious that the set of a_{2} modulo $a_{1} R, \cdots, a_{r}$ modulo $a_{1} R$ is a special system of parameters of $R / a_{1} R$ since a_{1}, \cdots, a_{r} is a special system of parameters of R. On the other hand we have $h d_{R} \mathfrak{Q}=1+h d_{R / a_{1} R}\left(\Omega / a_{1} R\right)$ by Lemma 5 and Alt. $R=$ Alt. $R / a_{1} R+1$. Hence $R / a_{1} R$ is a Macaulay local ring by the assumption of induction. This implies that R is a Macaulay local ring since a_{1} is a non-zero-divisor in R.

Appendix

By using the notion of the special system of parameters we have the Theorem (Cf. Theorem of [4]). In a local ring (R, \mathfrak{M}), the following conditions are equivalent:
(1) R is a Gorenstein local ring. ${ }^{2)}$
(2) There exists an $\mathfrak{M - p r i m a r y}$ ideal $\mathfrak{\mathfrak { g } \text { generated by a special }}$ system of parameters satisfying the following:

For any special system of parameters a_{1}, \cdots, a_{r} which generates $\mathfrak{\Omega}$, all $\mathfrak{\Omega}_{(n, i)}$ are irreducille, where $\mathfrak{\Omega}_{(n, i)}=\sum_{j=1}^{i-1} a_{j} R+\sum_{j=i}^{r} a_{j}^{n} R(r=$ Alt. $R, i=1, \cdots, r$ and $n=1,2, \cdots)$.

Proof. (1) $\Rightarrow(2)$ is obvious. For the proof of implication (2) $\Rightarrow(1)$ it will be sufficient only to prove that R is a Macaulay local ring. We shall prove it by induction on the altitude of R. If Alt. $R=0$, the proof is obvious. If Alt. $R \geq 1$, each $\Omega_{(n, 1)}=\sum_{j=1}^{r} a_{j}^{n} R$ is irreducible and $\mathfrak{N}_{(n, 1)} \varsubsetneqq \mathfrak{D}_{(n-1,1)}(n \geq 2)$. So we have $\mathfrak{Q}_{(n, 1)}: \mathfrak{M} \subseteq \mathfrak{N}_{(n-1,1)}^{3)}(n \geq 2)$. While we have $\bigcap_{n=1}^{\infty} \mathfrak{Q}_{(n, 1)} \subseteq \bigcap_{n=1}^{\infty} \mathfrak{M}^{n}=0$, therefore 0 : $\mathfrak{M}=\left(\bigcap_{n=2}^{\infty} \mathfrak{Q}_{(n, 1)}\right): \mathfrak{M}=$ $\bigcap_{n=2}^{\infty}\left(\mathfrak{Q}_{(n, 1)}: \mathfrak{M}\right) \subseteq \bigcap_{n=2}^{\infty} \mathfrak{Q}_{(n-1,1)}=0$. Since $0: \mathfrak{M}=0$, we have a special system
2) See [1].
3) See [5, p. 248, Th. 34].
of parameters a_{1}, \cdots, a_{r} with a_{1} as a non zero divisor which generates \mathfrak{Q} by Lemma 3 . For any special system of parameters $\bar{b}_{2}, \cdots, \bar{b}_{r}$ of $R / a_{1} R$, which generates $\mathfrak{Q} / a_{1} R, a_{1}, b_{2}, \cdots, b_{r}$ is a special system of parameters of R which generates $\mathfrak{\Omega}$, where $\bar{b}_{j}=b_{j}$ modulo $a_{1} R$. Let $\mathfrak{Q}_{(n, i)}^{\prime}$ be the ideal of $R / a_{1} R$ generated by $\bar{b}_{2}, \cdots, \bar{b}_{i-1}, \bar{b}_{i}^{n}, \cdots, \bar{b}_{r}^{n}$ $(i=2, \cdots, r, n=1,2, \cdots)$. Then all $\mathfrak{Q}_{(n, i)}^{\prime}$ are irreducible since all $a_{1} R+b_{2} R+\cdots+b_{i-1} R+b_{i}^{n} R+\cdots+b_{r}^{n} R$ are irreducible by our assumption. Hence $R / a_{1} R$ is a Macaulay local ring by our inductive assumption since Alt. $R=$ Alt. $R / a_{1} R+1$. This implies that R is a Macaulay local ring.

References

[1] H. Bass: On the ubiquity of Gorenstein rings. Math. Zeitschr., 82, 8-28 (1963).
[2] N. Bourbaki: Algèbre Commutative. Hermann, Paris (1961).
[3] M. Nagata: Local rings. (Interscience Tracts, 1962).
[4] D. G. Northcott and D. Rees: Principal systems. Quart. J. Math., 8, 119-127 (1957).
[5] O. Zariski and P. Samuel: Commutative Algebra, Vol. 1. Van Nostrand, Princeton (1958).

[^0]: 1) Concerning notations see [3].
