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63. Contraction of the Group of Diffeomorphisms of R"

By Akira AsApA
(Comm. by Kinjir6 KuNUGI, M.J.A., April 12, 1965)

In this note, we show that the group of all diffeomorphisms of
class C"(1<r< o) of R" is contractible to O(n) under the C"'-topology.
agr'<n).

The group of diffeomorphisms. Let f: R"—R" be a diffeomor-
phism of class C™ and set

f@)=(fi(x), +-+, fu(x))  (weR"),

where each fi(x) is a C"-function on R". Furthermore, we set
| f(x) |=1/§ | fi() [
D*f(@)=(D" (@), -+, D'fy(@), D'=— 2,
O 1e o s Q'
p:(ily °t %y in); |p |:1'1+ e +7;n’
_0(fyy 0y S)
J(f) (@)= B, o my

The set of all C"-diffeomorphisms of R" forms a group. For any
€>0 and an compact set K of R", consider the following subset of
this group :

U(f, K, e)={g || f(@)—g(2) |<e¢, | D*f(x)—D’g(x) |[<e, |p <7, 2 e K},
where 1<r' <,

Taking these U(f, K, ¢) as the open basis, the group of all C"-
diffeomorphisms becomes a topological group. (Cerf [17, 1, 4, 2.
Proposition 2, 4°. (p. 287)). We denote this group by H""'(n) and
denote the subgroup of H""(n) formed by those diffeomorphisms
fixing the origin by H;""'(n). The contraction o : H""'(n)x [-H""'(n)
defined by

o(f, &)= (fi(®)—t£(0), - - -, fu(x)—1f.(0)),
shows that H;"'(n) is a strong deformation retract of H""'(n). Hence
in the remainder, we consider the group H;"'(n).
Homomorphisms J, and ¢. Set

J()=J()O0), fe H"(n),
a;;)= (2_,‘ Ay, o0, ?__, amxi>, (a;5) € GL(n, R).
Then, for
U@, ={b) |V @s—bar<sl,

we have
J(U(S, K, e/n))CUJ(f),e), if 0€K,
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(U@, /M) Udai), K, ), if M=max ||,

Therefore the maps J,: H"'(n)—GL(n, R) and ¢:GL(n, R)—H{"' (n)
are both continuous. We note that .J, is not continuous if we use
the compact open topology.

Cleary, ¢ is an into isomorphism and its image is a closed subgroup
of Hy"'(n). Hence we identify ¢(GL(n, R)) with GL(n, R). Jy is
the identity map of GL(n, R).

Lemma 1. Let A be a Cr-function on R" with A(0)=0, and set

h(x, t)=t"h(tx,, -+, tx,), 0<tL1,
Wz, 0= 2% (o),
v 0w;
then h(x,t) and D*h(x, t)(|p|<r) are continuous as the functions on
R*x I.

Proof. If t+0, the continuity follows from the definition. As

h(0)=0, we have by the theorem of mean value,

ez, )= (ot2)e,, 0<O<1.
i=1 ox;
As each 9h/dx; is continuous, setting
01 @) =max| O (o) — O gy
v o<s<t| O, 0,

0:,(x) is continuous in ¢ and tends to 0 if ¢ tends to 0. This proves
the continuity of 2 at ¢=0, because we get
| h(, ©)—h(x, 0) |<3 0,,(@) | @; |.
The continuity of D’h(x,t) follows from the following equality :
(1) D*(h(z, t))=t"""Y(D*h)(tx,, - -, tx,).
Definition 1. For fe H{"'(n), define f,: R"—R" by
Ji(@)=t""f(tx)
=Sy, ey t@,), oo, G0, 00, ty)), 0<ESL.
@)= A= (3 2L, -+, 52 Ve 1),
@ ; @ 3931;

Lemma 2. f, has following properties :

(i) fi=f and f,e (GL(n, R)).

(ii) The correspondence f—f, is a homomorphism for all t.

(iii) Each f; belongs to H{"'(n).

(iv) As the maps of R*"XI to R", the maps g, h,: R**x I—R"
defined by g(x, t)=g.(x) and h,(x, t)=(D"f,)(x) are all contin-
uous for |pl<r.

(v) If f belongs to ¢«(GL(n, R)) then f,=f for all ¢.

Proof. (i) follows from the definition, and (ii) follows from

(2) S (e)=17 (¢t g (t)))
=t (g(tx)) = (f9)(x).



No. 4] Group of Diffeomorphisms of R» 275

By (2), f.fr(x)=2, hence f, is a homeomorphism of R", and as
we get
J(f)(@)=J (F)(t),
for all ¢ (containing t=0), we obtain (iii).
(iv) follows from lemma 1. (v) is clear by the definition.
Define the map @ : H{""'(n) X [-H{""'(n) by

o(f, ©)=rf.
By (i) and (v) of lemma 2, we obtain
(3) o(f, =, O(f, 0) € (GL(n, R)),
(4) o(f, t)=f, for all t, if fe «(GL(n,R)).

Continuity of @. Let K be an arbitrary compact set in R” and
set M=maX,c|®|. Furthermore, set

K= U tK.

0<t<1
Then since K is a continuous image of the compact set Kx I, K is
compact.
Lemma 3. If g belongs to U(f, K, ¢), then we have
(5) | D*f(x)—Drg, (%) |[<e, if we K, p<7/,
(6) | f@)—gx) [<nV'nM, if zeK,
for all ¢ (0<t<L1).
Proof. By (1), we get
| D°f;, (%) — D’ g;, /() |
=" [(D7f)(te) — (D g:)(t) |
< @D )y)—(D"9)W) |,
where € K and y=txc K. Hence we obtain (5).
By the mean value theorem, we have

| Fod@) — o (@) | = 12 D (f:-g(0ta)a;|

03}]'

3f i 0g;
m(ﬁtw)—%—(atw)l A

<2

<nMe. 0<o<l,zc K.

Therefore we get (6).

Lemma 4. @ is continuous.

Proof. As f, and D”f, are continuous on R"x I, we can choose
for any compact set K, t,€ I and ¢’ >0, a positive number « satisfying
(7) fieU(f, K, &), if |t—t|<2a.

In (7), we take ¢ to be smaller than min. (¢/2nV %M, ¢/2) for
given &. Then if g belongs to U(f, K, ¢, it follows from lemma 3
and (5) that

|ft°(x)—gt(x) |
S| fp(@)—fu@) |+ [ fo(x) — g(2) |

<&'+nVnMe<e, re K, |t—t|<a,
and
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| D”f,o(x) —Drg(x) |
<| D*f (%) —D*f (%) |+ | D*f(2) — D g,(%) |

<é'+e'<e, ze K, |t—1t,|<a.
Therefore we get R
(8) o(U(f, K, eh)x(INE+a, t—a)cU(f, K, ¢),

for arbitrary ¢,€ I, K and e. Hence @ is continuous.
As @ is continuous, we get by (3) and (4) the following
Theorem. ¢(GL(n, R)) is a strong deformation retract of H;'"'(n).
As ¢(GL(n, R)) is isomorphic to GL(n, R) (as a topological group)
and GL(n, R) is contractible to O(n), this theorem proves our assertion.
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