No. 4] 273

63. Contraction of the Group of Diffeomorphisms of R^*

By Akira ASADA

(Comm. by Kinjirô Kunugi, M.J.A., April 12, 1965)

In this note, we show that the group of all diffeomorphisms of class $C^r(1 \le r \le \infty)$ of R^n is contractible to O(n) under the $C^{r'}$ -topology. $(1 \le r' \le r)$.

The group of diffeomorphisms. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism of class \mathbb{C}^r and set

$$f(x) = (f_1(x), \dots, f_n(x)) \qquad (x \in \mathbb{R}^n),$$

where each $f_i(x)$ is a C^r -function on R^n . Furthermore, we set

$$|f(x)| = \sqrt{\sum_{i} |f_i(x)|^2}$$

$$D^pf(x)\!=\!(D^pf_1\!(x),\,\cdots,\,D^pf_n\!(x)),\,D^p\!=\!rac{\partial^{|p|}}{\partial x^{i_1}\cdots\partial x^{i_n}}, \ p=(i_1,\,\cdots,\,i_n),\,|\,p\,|\!=\!i_1\!+\cdots\!+i_n, \ J(f)(x)\!=\!rac{\partial(f_1,\,\cdots,\,f_n)}{\partial(x_1,\,\cdots,\,x_n)}.$$

The set of all C^r -diffeomorphisms of R^n forms a group. For any $\varepsilon > 0$ and an compact set K of R^n , consider the following subset of this group:

$$U(f,K,\varepsilon) = \{g \mid \mid f(x) - g(x) \mid <\varepsilon, \mid D^p f(x) - D^p g(x) \mid <\varepsilon, \mid p \mid \le r', x \in K \} \text{ , where } i \le r' \le r.$$

Taking these $U(f,K,\varepsilon)$ as the open basis, the group of all C^r -diffeomorphisms becomes a topological group. (Cerf [1], 1, 4, 2. Proposition 2, 4°. (p. 287)). We denote this group by $H^{r,r'}(n)$ and denote the subgroup of $H^{r,r'}(n)$ formed by those diffeomorphisms fixing the origin by $H^{r,r'}(n)$. The contraction $\rho: H^{r,r'}(n) \times I \longrightarrow H^{r,r'}(n)$ defined by

$$\rho(f, t) = (f_1(x) - tf_1(0), \dots, f_n(x) - tf_n(0)),$$

shows that $H_0^{r,r'}(n)$ is a strong deformation retract of $H^{r,r'}(n)$. Hence in the remainder, we consider the group $H_0^{r,r'}(n)$.

Homomorphisms J_0 and ι . Set

$$J_0(f) = J(f)(0), f \in H_0^{r,r'}(n),$$

 $\iota(a_{ij}) = \left(\sum_i a_{i1}x_i, \dots, \sum_i a_{in}x_i\right), (a_{ij}) \in GL(n, R).$

Then, for

$$U((a_{ij}), \varepsilon) = \left\{ (b_{ij}) \mid \sqrt{\sum_{ij} (a_{ij} - b_{ij})^2} < \varepsilon
ight\}$$
,

we have

$$J_0(U(f, K, \varepsilon/n)) \subset U(J_0(f), \varepsilon), \quad \text{if } 0 \in K,$$

$$(U(a_{ij}), \varepsilon/M)) \subset U(\iota(a_{ij}), K, \varepsilon), \quad \text{if } M = \max_{x \in K} |x|.$$

Therefore the maps $J_0: H_0^{r,r'}(n) \rightarrow GL(n,R)$ and $\iota: GL(n,R) \rightarrow H_0^{r,r'}(n)$ are both continuous. We note that J_0 is not continuous if we use the compact open topology.

Cleary, ι is an into isomorphism and its image is a closed subgroup of $H_0^{r,r'}(n)$. Hence we identify $\iota(GL(n,R))$ with GL(n,R). $J_0\iota$ is the identity map of GL(n,R).

Lemma 1. Let h be a C^r -function on R^n with h(0)=0, and set $h(x, t)=t^{-1}h(tx_1, \dots, tx_n), \quad 0< t\leq 1,$

$$h(x, 0) = \sum_{i} \frac{\partial h}{\partial x_i}(0)x_i,$$

then h(x, t) and $D^{p}h(x, t)(|p| \le r)$ are continuous as the functions on $\mathbb{R}^{n} \times I$.

Proof. If $t\neq 0$, the continuity follows from the definition. As h(0)=0, we have by the theorem of mean value,

$$h(x, t) = \sum_{i=1}^{\infty} \frac{\partial h}{\partial x_i} (\theta t x) x_i, \quad 0 < \theta < 1.$$

As each $\partial h/\partial x_i$ is continuous, setting

$$\rho_{i,t}(x) = \max_{0 \le s \le t} \left| \frac{\partial h}{\partial x_i}(sx) - \frac{\partial h}{\partial x_i}(0) \right|,$$

 $\rho_{i,t}(x)$ is continuous in t and tends to 0 if t tends to 0. This proves the continuity of h at t=0, because we get

$$|h(x, t) - h(x, 0)| \le \sum \rho_{i,t}(x) |x_i|$$
.

The continuity of $D^ph(x, t)$ follows from the following equality: (1) $D^p(h(x, t)) = t^{|p|-1}(D^ph)(tx_1, \dots, tx_n).$

 $\begin{array}{ll} \text{Definition 1.} & \text{For } f \in H_0^{r,r'}(n), \text{ define } f_t: R^n {\longrightarrow} R^n \text{ by} \\ & f_t(x) {=} t^{-1} f(tx) \\ & = (t^{-1} f_1(tx_1, \, \cdots, \, tx_n), \, \cdots, \, t^{-1} f_n(tx_1, \cdots, \, tx_n)), \quad 0 < t \leqq 1. \\ & f_0(x) {=} J_0(f)(x) {=} \Big(\sum_i \frac{\partial f_1}{\partial x_i}(0) x_i, \, \cdots, \, \sum_i \frac{\partial f_n}{\partial x_i}(0) x_i \Big). \end{array}$

Lemma 2. f_t has following properties:

- (i) $f_1=f$ and $f_0 \in (GL(n,R))$.
- (ii) The correspondence $f \rightarrow f_t$ is a homomorphism for all t.
- (iii) Each f_t belongs to $H_0^{r,r'}(n)$.
- (iv) As the maps of $R^n \times I$ to R^n , the maps $g, h_p : R^n \times I \longrightarrow R^n$ defined by $g(x, t) = g_t(x)$ and $h_p(x, t) = (D^p f_t)(x)$ are all continuous for $|p| \le r$.
- (v) If f belongs to $\iota(GL(n,R))$ then $f_t=f$ for all t.

Proof. (i) follows from the definition, and (ii) follows from $f(x,y) = \frac{1}{2} \int_{-\infty}^{\infty} dx \, dx \, dx$

$$f_t g_t(x) = t^{-1} f(t(t^{-1} g(tx)))$$

= $t^{-1} f(g(tx)) = (fg)_t(x)$.

By (2), $f_t f_t^{-1}(x) = x$, hence f_t is a homeomorphism of \mathbb{R}^n , and as we get

$$J(f_t)(x) = J(f)(tx),$$

for all t (containing t=0), we obtain (iii).

(iv) follows from lemma 1. (v) is clear by the definition.

Define the map $\Phi: H_0^{r,r'}(n) \times I \longrightarrow H_0^{r,r'}(n)$ by

$$\Phi(f, t) = f_t$$
.

By (i) and (v) of lemma 2, we obtain

$$(3) \qquad \qquad \varPhi(f,1) = f, \, \varPhi(f,0) \in \iota(GL(n,R)),$$

(4)
$$\Phi(f,t)=f$$
, for all t , if $f \in \iota(GL(n,R))$.

Continuity of Φ . Let K be an arbitrary compact set in \mathbb{R}^n and set $M = \max_{x \in K} |x|$. Furthermore, set

$$\hat{K} = \bigcup_{0 \le t \le 1} tK$$
.

 $\hat{K} = \bigcup_{0 \le t \le 1} tK.$ Then since \hat{K} is a continuous image of the compact set $K \times I$, \hat{K} is compact.

Lemma 3. If g belongs to $U(f, K, \varepsilon)$, then we have

$$|D^{p}f_{t}(x)-D^{p}g_{t}(x)|<\varepsilon, \quad \text{if } x\in K, \ p\leq r',$$

(6)
$$|f_t(x)-g_t(x)| < n\sqrt{n}M$$
, if $x \in K$,

for all t $(0 \le t \le 1)$.

Proof. By (1), we get

$$egin{aligned} \mid D^{p}f_{i,t}(x) - D^{p}g_{i,t}(x) \mid \ &= t^{\mid p \mid -1} \mid (D^{p}f_{i})(tx) - (D^{p}g_{i})(tx) \mid \ &\leq \mid (D^{p}f_{i})(y) - (D^{p}g_{i})(y) \mid, \end{aligned}$$

where $x \in K$ and $y = tx \in \hat{K}$. Hence we obtain (5).

By the mean value theorem, we have

$$egin{aligned} |f_{i,i}(x)-g_{i,i}(x)| &= \left|\sum_{j} rac{\partial}{\partial x_{j}} (f_{i}-g_{i})(heta t x) x_{j}
ight| \ &\leq \sum_{j} \left|rac{\partial f_{i}}{\partial x_{j}} (heta t x) - rac{\partial g_{i}}{\partial x_{j}} (heta t x)
ight| |x_{j}| \ &\leq n M arepsilon. \end{aligned}$$

Therefore we get (6).

Lemma 4. Φ is continuous.

Proof. As f_t and $D^p f_t$ are continuous on $\mathbb{R}^n \times I$, we can choose for any compact set K, $t_0 \in I$ and $\varepsilon' > 0$, a positive number α satisfying $f_t \in U(f_{t_0}, \hat{K}, \varepsilon'), \quad \text{if } |t-t_0| < 2\alpha.$ (7)

In (7), we take ε' to be smaller than min. $(\varepsilon/2n\sqrt{n}M, \varepsilon/2)$ for given ε . Then if g belongs to $U(f, \hat{K}, \varepsilon')$, it follows from lemma 3 and (5) that

$$|f_{t_0}(x)-g_t(x)|$$

$$\leq |f_{t_0}(x)-f_t(x)|+|f_t(x)-g_t(x)|$$

$$\leq \varepsilon'+n\sqrt{n}M\varepsilon'<\varepsilon, \qquad x\in K, |t-t_0|<\alpha,$$

and

$$\begin{array}{l} \mid D^{p}f_{t_{0}}(x) - D^{p}g_{t}(x) \mid \\ \leq \mid D^{p}f_{t_{0}}(x) - D^{p}f_{t}(x) \mid + \mid D^{p}f_{t}(x) - D^{p}g_{t}(x) \mid \\ \leq \varepsilon' + \varepsilon' < \varepsilon, & x \in K, \mid t - t_{0} \mid < \alpha. \end{array}$$

Therefore we get

(8)
$$\varPhi(U(f, \hat{K}, \varepsilon') \times (I \cap (t_0 + \alpha, t_0 - \alpha))) \subset U(f_{t_0}, K, \varepsilon),$$

for arbitrary $t_0 \in I$, K and ε . Hence Φ is continuous.

As \mathcal{O} is continuous, we get by (3) and (4) the following Theorem. $\iota(GL(n,R))$ is a strong deformation retract of $H_0^{r,r'}(n)$. As $\iota(GL(n,R))$ is isomorphic to GL(n,R) (as a topological group) and GL(n,R) is contractible to O(n), this theorem proves our assertion.

Reference

[1] Cerf, J.: Topologie de certains espaces de plongements. Bull. Soc. math. France, 89, 227-380 (1961).