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119. Singular Cut.off Process and Lorentz Properties

By Hideo YAMAGATA
(Comm. by Kinjir8 KUNUGL M.J.A., Sept. 13, 1965)

1. Introduction. Usually it is believed that the ordinary cut-
off disturbs the ordinary Lorentz covariance and causality condition
defined in [4 pp. 249, 250. But by using a sort of singular cut-off
which is alike to one defined in [3 p. 377, we can also avoid these
difficulties in a sense. Namely, though these difficulties are too
essential to avoid by the construction of -,= C(x-x)((x); usual
field unction), the suitable use of E.R. integral or singular mollifier
gives the positive effect for this purpose. This positive effect is one
of the notable advantage o this E.R. singular cut-off. The direct
purpose of the use of is the selection of the suitable conditional
convergence for the definition of integral. It seems that the suitable
interpretation of the change of used here is also possible from
the consideration of inner structure of elementary particle. On the
other hand, we can also avoid these difficulties by the change
the definition of Lorentz covariance and causality, which are likely
to represent an approximation from another view point [2 p. 73. But
in this article we do not treat this mainly. The materials of this
article are arranged as follows: in 2 E.R. integral is defined by
A-integral form, in 3 the definition of in the our (or three)
dimensional E.R. singular cut-off and the positive effect of this
singular cut-off to ordinary Lorentz covariance are shown, namely
this positive effect is to rewrite the change of the smeared out field
unction by inhomogeneous Lorentz transform (inner product conser-
ving) to the ordinary Lorentz covariant form (except the change of ),
and in 4 the positive effect of E.R. singular cut-off to ordinary
causality condition is given except the change of .

2. E.R. integral. Definition 1. Suppose that the unction
f(z) defined in the interval a, b satisfies the following two conditions:

1) I n(x)dx tends to zero as n tends to
J [a,b] M [;

where () is locally L positive valued unction,

2) there exists a finite limit lim I-[f(x)dx, where

[f(x)=f(X)[O for x satisfying the relation If(x)l___n(x)
for x satisfying the relation If(x) I> he(x).

Then we say that f(x) is E.R. integrable and that the above limit
is E.R. integral of f(x) (same as one by K. Kunugui etc.) which
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is denoted by E.R. f(x)dx. Here points out the measure defined

by (B)- I(x)dx.
We may also use the locally L non-negative valued unction (x)

with the property {x; f(x):/=:O}_{x; (x):/:0}. If (x)-- 1, E.R. integral
is equal to E.R. (or A) integral.

From the condition 1), an arbitrary non decreasing non-negative
real number’s sequence (tending to ) can be used instead of {n} in
this definition. In the ollowing Definition 2, suppose that (or )
is the measure (or the unction) used in Definition 1.

Definition 2. Suppose that f(x) (- <x< + ) satisfy the
ollowing three conditions;

I n(x)dx tends to zero as n tends to ((x)e L),1)
2) [f(x) (by ) is not zero in only a finite interval,

g) ghere exists a limig lim -f,(x)d (defined by ).
Then we say that f(x) is improper E.R. integrable and the above
limit is improper E.R. integral of f(x)denoted by imp. E.R.
+f(x)dx. By using sort of locally E.R. integrability we cn

define the more general imp. E.R. integral.
The above E.R. integral does not give by the change o the

measure but of the rule o conditional convergence from E.R. integral
(or A integral).

:. Lorentz covariance. Hereafter, let denote the three
dimensional vector, denote (, t), (x) a field function, and p(x) a
real valued (smooth) function, [f(x) + -= (1/2){f(x)+ If(x) I} and If(x)]--=
(1/2){f(x)-If(x)

Suppose that U(a, A) is the unitary operator depending on the
inhomogeneous Lorentz transorm (a, A) which is defined in the state
vector’s space [6 p. 22 (or Von Neumann’s direct product space).
Furthermore, hereafter we mainly use the convolution by the meaning
of [3 p. 377 Def. 1, and it is denoted by ..

In [3 p. 380 we have discussed about the A inhomogeneous Lorentz
covariance, and assert the following

Lemma 1. F(x), p(x) satisfies the A inhomogeneous Lorentz
covariance.

Here we will discuss about the ordinary Lorentz covariance defined
in [4 p. 249 permitting the variant o (or ) in E.R. integral.

It is presumed that this covariance is satisfied or the smeared
out field unction F(x), p(x) by p(x) with the property p(x)=-p(Ax).
But since the A invariant pseudo unction p(x)with the finite carrier
is only C(x), only ?(x),C6(x)=CF(x) satisfies this covarianee for
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usual Lebesgue measure . Now, let’s determine (or ) in E.R.
integral for the use of the other singular mollifier with the property
p()=p(A) (or with the imp. E.R. equivalent property p()-p(A)).
(Even for the three dimensional E.R. singular cut-off, the similar
discussions are possible.) Since p() can be completely described (or
described by the meaning of imp. E.R. equivalence) by p(r)= p(, 0)
(I I--r) and p(t)=p(O, t), let’s determine the functions p(r) (r>__O)
and p(t) at the first step.

Lemma 2. There exists a non-negative number’s sequence
with the properties ,= a-l, =+ a-o(1/n), =ja-./ oo and
lira ja.- 0.

Proof. As the positive integer’s sequence {n} with the property
,= 1/n 2/n, choose {n} with the property n_>_ [exp k. Further-
more construct the following {b} (from this {n});

0 for nnb- 1/(kn) or n-n.
If a-b/(= b), then the sequence {a} satisfies the above condi-
tions.

From this Lemma 2 and [2 p. 76 Lemma 2, we may assert the
following

Lemma :. The singular function fi(r) (or f(t)) with the fol-
lowing properties can be constructed (i) {r;fi(r)O,r>__O}_F
(ii) [f(r) + dr- +oo and [f(r)- dr-- hold valid for
open U{r; r>__0}, where F is the set defined in [3 p. 379.

Since O<B(V)<-_I] A(O, t--t)II ’/I t--t I<=B(V) and (or)
B(V) <__ ]l A(-, 0) II/ll] ]1- ]1 I--< B(V) hold valid in the arbitrary
bounded open V{(, t);l I:/:t}, it ollows rom this Lemma 3 that
the following Lemma 4 is asserted.

A(r) for x=(, O) (I ]- r)Lemma 4. Suppose that f(x)-(f(t) for x=(, t).
Then f(x) has the properties [f(x)]+dx / and If(x)]- dx-

Y J
for any open UE. Here A is an arbitrary homogeneous Lorentz
transform.

Next let’s show the properties of locally L non-negative function’s
sequences {(x)} and {(x)} which are useful to the determination of

(or ) used here.
Suppose that g(x) is a fixed element in ((R)) (or ()) and that f(x) is

the singular function defined in Lemma 4.
Let x0 denote the time t and E,, denote the set defined in

p. 379. (i) (x) and .(x) are constant in [II=0 {x;//2"x
(g+ 1)/2}] gl {x; x--A(x, O, O, 0), x e E,, F} and EH=o {x;
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x<(l+l)/2} {x; x--4(6, t), te E,,,F} (F={x; f(x)O}), where
/t-0, +1, +2, -... (ii) (x) and (x) take the values ]f(x) or 0 for
arbitrary fixed x. (iii) The sets {x; (x)>0} and {x; (x)>0} satisy
the ollowing conditions; the sets in the family [{x; (x)>0},
{x; (x)>0}n, m-l, 2, ... are compact and disjoint each other,

{x; (x)> O} {x; f(x) > O} and U {x; (x)O} {x; f(x) > 0}. (iv) The
integral

tends to zero as n tends to . (v) There exists a finite fixed limit

with the property lim [f,(x)dx-g(x)dx. Here [f(x) is the

unction

[f(x) or x such that -(x)f(x)(x)
[f(x)-(x) or x such that f(x) > (x)

[-(x) for x such that f(x)<--(x).
According to Riemann’s theorem about the conditionally convergent

series, the sequences {(x)} and {(x)} can be constructed by the
refinement of the mesh in E and by the suitable use o the meet
this mesh and the subset of the above F. Then we assert the
following

Lemma . There exist the sequences {(x)} and {(x)} (related
to f(x) in Lemma 4) satisfying the above properties (i)(v).

For the increasing positive integer’s sequence {N}, let’s construct
the non-negative unction (x)-= ((x)+(x))/N, etc. which is
positive in the set F. This (x) can be locally summable or a suitable

{N}. By using the measure (B)-(x)dx. we assert the ollowing

Theorem 1. There exists (x, y, z, t) such that imp. E.R.
f(x)(x)dx-g(x)@(x)dx holds valid for fixed g(x)e() (or ())
and for any (x)e (). Here () is the bounded and C functions’
space [5 II, p. 55.

Now suppose that (x, y, z, t) has the property such that imp.
E.R.

ko(t- t’)}dx’ g)+ conjugate term}
is equal to p() () for a fixed ()e () (or ()). Since f(’)
f(A’) and d’--g(A’) (or Lebesgue measure) hold valid, the ordinary
Lorent eoarianee is satisfied for this imp. N.R. up(), f() by the
following meaning;

=(U, U(a, A) imp. g.R. p() f()U(a, A)-g)
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(E3] P. 380 Lemma 1 Proof), where A is the measure with the property

(B)--t(A-)d.. By using the singular function’s sequence {f},
we can define the singular cut-off with the same properties as 3
p. 380 Theorem 1. If we use three dimensional E.R. singular cut-
off (3-_1 p. 377 De. 1 3 p. 380 Theorem 1), the above ordinary
Lorentz covariance is also satisfied by the more complicated change
of . Here f(o’)-f(Ax/) must also weaken suitably. It seems that
the change of means the change of the appearance physically.

Example. imp. E.R. I Idkp(k)/(k+m); (k-k-k) becomes
finite by this Theorem 1 for suitable (or 0), where p(x) is the
singular function defined in Lemma 3.

4. Causality. Definition 3.

E(A)f? * f(1), (A)zr f(2)

k’(’- ’) ]0(t- r) / k($’-z")f2(y’)dy’dk dk’dy/ i(A)lf(Y)
f l a(), a+(f’)/2.(A)Iexp (-i)((-9)-’(’-’)

k’dyI, where y-(, r), y’-(’, r’).

We may use various singular integrals instead of A integral in the
above Def. 3. Furthermore we can easily apply this definition to three
dimensional singular cut-off. Now when the following two conditions
are satisfied, we understood that a sort of causality condition was
satisfied 2 p. 73;

(1) {; ()0} is the global (local or generalized) causal set
2 p. 74, where p() is three dimensional mollifier used for singular
cut-off,

(2) Boundary {; p()=/=0}--{; p():/=0}{; p()=0}___{; p()
0}.

The ordinary causality condition treated here is the following.
Definition 4. If .f), z.f)(5--5’)=0 (by the suitable

singular integral) holds valid for the two space-like points 5’, we
say that the ordinary causality condition is satisfied by this singular
cut-off.

By the same argument as Theorem 1 we can choose v>(B)--
() (2) (2)(x)dx and , (B)-- (x)dx such that the relations imp. E.R.

’f(’(a)4/’(c)dx=8(,)(c)dx and imp. E.R.
S()()d holds valid for ()e (3).any

When these () and () are used two space-like points (, 5’),
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(or two unctions depending on --5’ with the same properties related
to are used), E.R. () f(), E.R. ()7 f()-0 holds valid, and
the ordinary causality condition is satisfied in a sense. Here f()(x)
and f()(x) are unctions defined in Lemma 4.

By the similar argument we can also assert this causality condition
for three dimensional E.R. singular cut-off.

It seems that the value o mollifier in our model represents a sort
of probability o the existence of positive and negative particles (the
component of elementary particle under the quantized Brownian
motion). Furthermore, the use of the above and etc. seems
to give a connection between local and nonlocal theory.
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