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154. Algebraic Aspects of Non-Self Adjoint Operators™

By Noboru Suzuki
Kanazawa University and University of Minnesota
(Comm. by Kinjiré KUNUGI, M.J.A., Oct. 12, 1965)

The purpose of this paper is to present the algebraic approach
to the theory of non-self adjoint operators on Hilbert space by means
of the theory of von Neumann algebras. We know that this approach
was quite adequate for the general treatment of normal operators
on Hilbert space with the aid of the pleasant features of abelian von
Neumann algebras. More generally, our approach with its technical
advantages will serve to describe the structure of non-normal oper-
ators. In the present paper, we shall introduce a new class of
operators on Hilbert space. An operator A is said to be primary
if the von Neumann algebra R(A) generated by A is a factor (i.e.,
the center of R(A) is the scalar multiples of the identity operator).
Then it may be considered that the spectral decomposition of a
normal operator A is essentially nothing but the decomposition of 4 into
primary normal operators (which are scalar operators). Moreover, we
know that an isometry is decomposed as the direct sum of a unitary
operators and a unilateral shift. As we have shown in [7] (ef. [3;
Theorem 17), a unilateral shift is a primary operator. From this
fact we can easily see that a non-scalar isometry is a wunilateral
shift if and only if it is primary. Therefore, with the aid of the
spectral theorem for a unitary operator, the above decomposition of
an isometry V essentially is the decomposition of V into primary
isometric operators. From this point of view, the decomposition of
an operator into primary operators may be regarded as a kind of
spectral decomposition.

We shall concern ourselves with the class of operators whose
imaginary part are completely continuous. M. S. Brodskii-M. S.
Livsic [2] and M. 8. Livsic [5] have developed the theory of subdi-
agonalization for operators whose imaginary parts belong to the
trace class. Our purpose is to establish the decomposition of an
operator of this class into primary operators belonging to this same
class. Consequently, we shall be able to see some algebraic aspects
of operators of this class.

For the sake of simplicity, we shall assume that our Hiblert
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space is separable. By an operator we shall always understand a
bounded linear transformation on a Hilbert space. By a von Neumann
algebra we shall mean a self-adjoint operator algebra with the identity
operator which is closed in the weak topology. For the basic defin-
itions and notations concerning the theory of von Neumann alge-
bras, we shall refer to the book of J. Dixmier [1].

1. Let A be an operator on a Hilbert space H whose imaginary

part Im(A)=%(A—A*) is completely continuous. Our object is to
7

decompose essentially the operator A into primary operators. We
shall denote by K the range of Im(4), i.e.,

K=Y (A—anH
21

and the projection on the subspace K will be denoted by E. Moreover
we shall consider the subspace H, generated by vectors of the form
A"p(pe K, n=0,1,2, --.) and denote by P the projection on H,.
Since Im(A) is a self-adjoint completely continuous operator, it is well
known that there exists an orthonormal basis in H whose elements
are proper values of Im(A). Therefore, if we denote by {,}(ke N)
the countable family of all distinct non-zero proper values of Im(A)
and by E, the projection on the proper subspace corresponding to
Ui, each proper subspace E, H is finite dimensional and E=3 E,.
The key observation in our decomposition is that each E, (ke N) and
E are projections in R(A). Then we can see that the projection P
is the central support of E (that is, the minimal central projection
containing E). From this fact it follows that A is decomposed into
the form
A=A, ®Ap

where A, (resp. A;_p) is the restriction of A on PH (resp. (I—P)H)
and A, , is a self-adjoint operator. Keeping in mind that each pro-
jection E, in R(A) is finite dimensional, we can choose a family of
minimal projections F (i€ I) in R(A) such that the central supports
P; of F; are mutually orthogonal and P=3c,P;. Here, by making
use of the standard technique on von Neumann algebras, we can
decompose A, by the family of central projections P;(ie€ I) into
primary operators.

THEOREM 1. An operator A with completely continuous imagi-
nary part on a Hilbert space H is decomposed by a unique countable
family of mutually orthogonal central projections P,P;(t € I) in R(A)
into the form

A:APO@EieI@AP¢
where the restriction Ap of A to PH 1s a self-adjoint operator, the
restriction Ap, of A to P;H(ieI) is a primary operator with com-
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pletely continuous imaginary part and P=>¢.P; is the projection
on the subspace generated by wectors of the form A p(pc Im(A)H,
7n=0,1,2, «--).

Certainly the essentials of our result is the decomposition of
R(A) into factors in the reduction theory of von Neumann [6], but
it should be noticed that the character of the operator A has induced
a more simple decomposition of R(A). What our theorem means is
quite well illustrated by taking a normal operator of this class.

COROLLARY 1. Let A be a mormal operator with completely
continuwous tmaginary part. Then A is uniquely expressed by a
countable family of mutually orthogonal projections P, P(ieI) in
R(A) as follows:

AIAPo‘I“ ZielziPi
where AP, is a self-adjoint operator, each projection P, (i€ I) is
finite dimensional, I=Py+>c,P; and {1,} (i€ I) is the family of
non-real proper values of A.

Here, we shall mention a very important special class of our
operators, that is, the class of operators whose imaginary parts are
finite dimensional operators. Let A be an operator with finite dim-
ensional imaginary part. Then the dimension 7 of the range of
Im(A) is called the non-hermitian rank of A. In this case, the
main part of Theorem 1 may be stated as follows.

COROLLARY 2. Am operator A with non-hermitian rank r s
decomposed by a unique family of mutually orthogonal central pro-
jections Py, P, ---, P, in R(A) into the form

AZAPO@API@ s (‘BAP,L
where Ap is a self-adjoint operator, Ap (1=1,2, .-, n) is a primary
operator with mon-hermitian rank k;, and ﬁ‘,kizfr.

2. The algebraic structure of an opexgjzor A is closely related
to the type of the von Neumann algebra R(A). We say that an
operator A is of type I if R(A) is of type I, and furthermore we say
that a primary operator A is of type I, (resp. type I,) if the factor
R(A) is of type I, (resp. type I.). Then a natural question coming
to our mind is this: which non-normal operators are of type I? A
few answers to this question are known. We know that an isometry
is of type I ([7]). Now we can add a satisfactory answer to this
question. Indeed, the determination of the type of operators with
completely continuous imaginary part is visible from Theorem 1.

THEOREM 2. An operator A with completely continuous imagi-
nary part is of type I.

For the proof, we may observe that each operator A, in Theorem
1 generates the von Neumann algebra which is spatial isomorphic to
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C®-L(D), where C is the scalar multiples of the identity operator on
F.H and _L(9) is the algebra of all operators on a finite or infinite
dimensional Hilbert space . This class of operators contains several
important classes of operators which appear in many fields of analy-
sis. In particular, we should notice the following fact ([8]).

COROLLARY. A completely continuous operator is of type I.

Naturally, a non-scalar primary operator A with completely con-
tinuous imaginary part admits to be of type I., but the commutant
of R(A) is necessarily of type I,(n=1,2,...). It seems that the
algebraic aspect of primary operators of our class is well expounded
by this fact. Actually, from this fact we can deduce the algebraic
structure of a primary operator with finite non-hermitian rank in a
simple way. The details of this subject will appear elsewhere with
complete proofs of our theorems.

3, M. 8. Brodskii-M. S. Livsic [2] have established the basic
properties of the spectrum of an operator with completely continuous
imaginary part. For example, every non-real point of the spectrum
of the operator is a proper value and its proper subspace is finite
dimensional. Here is a significant and attractive problem: how does
the algebraic simplicity of a primary operator effect its spectrum?
Although many questions about it are left to be settled in the
future, we shall have some comments on the spectrum of primary
operators as a step toward our problem.

(A) Ewvery point of the spectrum of a mnon-scalar primary
operator A with completely continuous imaginary part lies in the
open disc D,={2:|2] < ||A|]}.

Indeed, every proper value of a non-scalar primary operator A
lies in the open dise D,.

B) A primary operator with non-hermitian rank 1 does mot
have a real proper value.

From this result we can see that Theorem 1 yields the spectral
decomposition of an operator A with non-hermitian rank 1 whose
spectrum is real, in the sense that A is decomposed by a central
projection in R(A) into the form A=B®C where B (resp. C) has a
pure point (resp. continuous) spectrum. Among the primary operators
with non-hermitian rank 1, a quasi-nilpotent operator is completely
determined as follows.

(C) A quasi-nilpotent primary operator with non-hermitian
rank 1 is unitarily equivalent to the integral operator AV on
L.,[0, 1], where 2 is a scalar and V is the operator defined by

(VH@=i| fitydt .
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This is the slight modification of the notable result obtained in
[2] and [4].
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