168. The Relation between (N, p_n) and (\overline{N}, p_n) Summability. II

By Kazuo Ishiguro

Department of Mathematics, Hokkaido University, Sapporo (Comm. by Kinjirô KUNUGI, M.J.A., Nov. 12, 1965)

§ 1. The present note is a continuation of the previous paper by the author $\lceil 2 \rceil$. We suppose, throughout this note, 1) that

$$p_n > 0, \qquad \sum\limits_{n=0}^{\infty} p_n = \infty, \ P_n = p_0 + p_1 + \cdots + p_n, \; n = 0, 1, \cdots.$$

The Nörlund transformation (N, p_n) is defined as transforming the sequence $\{s_n\}$ into the sequence $\{t_n\}$ by means of the equation

$$(1) t_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{n-\nu} s_{\nu}.$$

As is well known, this transformation is regular if

$$\lim_{n\to\infty}\frac{p_n}{P_n}=0.$$

See Hardy [1], p. 64.

The discontinuous Riesz transformation (\bar{N}, p_n) is defined as transforming the sequence $\{s_n\}$ into the sequence $\{u_n\}$ by means of the equation

$$u_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{\nu} s_{\nu}.$$

This transformation is regular (see Hardy [1], p. 57).

From (1) we see easily

$$\sum_{
u=0}^n P_{n-
u} s_
u = \sum_{
u=0}^n P_
u t_
u$$

Thus we obtain the following

Theorem 1. (N, P_n) is equivalent² to the iteration product $(\overline{N}, P_n) \cdot (N, p_n)$.

§ 2. We shall prove here the following

Theorem 2. If

(4) $\{p_n\}$ is non-increasing, and if

¹⁾ In Lemma, we need not assume $\sum_{n=0}^{\infty} p_n = \infty$ generally.

²⁾ Given two summability methods A, B, we say that A implies B if any series or sequence summable A is summable B to the same sum. We say that A and B are equivalent if A implies B and B implies A.

(5)
$$\frac{p_{n+1}}{p_n} \ge \frac{p_n}{p_{n-1}}, \quad n=1, 2, \dots,$$

then (N, p_n) implies (\overline{N}, p_n) .

In order to prove the theorem, we require the following

Lemma. If
$$p(x)=\sum_{n=0}^{\infty}p_nx^n$$
 is convergent for $|x|<1$, and if $p_n>0$, $n=0,1,\cdots$,
$$\frac{p_{n+1}}{p_n}\geq \frac{p_n}{p_{n-1}}, \qquad n=1,2,\cdots,$$

then

$$\{p(x)\}^{-1} = \frac{1}{p_0} + q_1 x + q_2 x^2 + \cdots,$$

where

$$q_n \le 0, \quad n = 1, 2, \dots, \\ \sum_{n=1}^{\infty} |q_n| \le \frac{1}{p_0}.$$

If
$$\sum_{n=0}^{\infty} p_n = \infty$$
, then $\sum_{n=1}^{\infty} |q_n| = \frac{1}{p_0}$.

For the proof of this lemma, see, e.g., Hardy [1], Theorem 22. We now give the proof of our theorem. From (4) we see easily that

$$\lim_{n\to\infty}\frac{P_{n-1}}{P_n}=1,$$

that $\sum_{n=0}^{\infty} P_n x^n$ is convergent for |x| < 1, and that $p(x) = \sum_{n=0}^{\infty} p_n x^n$ also converges for |x| < 1. Since $p_0 \neq 0$, $q(x) = \{p(x)\}^{-1} = \sum_{n=0}^{\infty} q_n x^n$ has a non-zero radius of convergence. Now the transformation inverse to (1) is

$$s_n = \sum_{k=0}^n q_{n-k} P_k t_k.$$

See Kuttner [3]. From (3) and (6) we obtain

$$\begin{aligned} u_{n} &= \frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{\nu} \sum_{k=0}^{\nu} q_{\nu-k} P_{k} t_{k} \\ &= \frac{1}{P_{n}} \sum_{k=0}^{n} P_{k} t_{k} \sum_{\nu=0}^{n-k} p_{k+\nu} q_{\nu} \\ &= \sum_{k=0}^{n} b_{nk} t_{k}, \end{aligned}$$

where

$$b_{nk} = \frac{P_k}{P_n} \sum_{\nu=0}^{n-k} p_{k+\nu} q_{
u}$$
.

Now if $s_{\nu}=1$ for all ν , then $t_n=1$, $u_n=1$ for all n. Hence $\sum_{k=0}^{n} b_{nk} = 1$ for all n. Also, since $P_n \to \infty$ and $q_n \to 0$, we see easily

that $b_{nk} \rightarrow 0$ as $n \rightarrow \infty$ for any fixed k. Hence a necessary and sufficient condition for the transformation (7) to be regular is that

(8)
$$\sum_{k=0}^{n} |b_{nk}| = O(1).$$

Since

$$egin{aligned} b_{nk} = & rac{P_k}{P_n} (p_k q_0 + p_{k+1} q_1 + \; \cdots \; + p_n q_{n-k}) \ & \geq & rac{P_k}{P_n} \Big\{ rac{p_k}{p_0} - p_k (|\; q_1 \, | + | q_2 \, | + \; \cdots \; + |\; q_{n-k} \, |) \Big\} \ & > & 0 \end{aligned}$$

from (4) and the lemma, we get (8).

This proves our assertion.

Combining the last theorem and Theorem 1 of the previous paper [2], we obtain the following

Theorem 3. If
$$\{p_n\}$$
 is non-increasing, and if $p_n \ge \sigma > 0$, $n = 0, 1, \dots$,
$$\frac{p_{n+1}}{p_n} \ge \frac{p_n}{p_{n-1}}, \quad n = 1, 2, \dots,$$

then (N, p_n) and (\bar{N}, p_n) are equivalent.

References

- [1] G. H. Hardy: Divergent Series. Oxford (1949).
- [2] K. Ishiguro: The relation between (N, p_n) and (\overline{N}, p_n) summability. Proc. Japan Acad., 41, 120-122 (1965).
- [3] B. Kuttner: The high indices theorem for discontinuous Riesz means. Jour. London Math. Soc., 39, 635-642 (1964).