199. Axiom Systems of B-algebra. II

By Yoshinari ARAI and Kiyoshi ISÉKI (Comm. by Kinjirô KUNUGI, M.J.A., Dec. 13, 1965)

In the first note [2], we gave axiom systems of *B*-algebra. A *B*-algebra $M = \langle x, 0, *, \sim \rangle$ is given by the following axioms:

- $B \ 1 \quad x * y \leqslant x,$
- $B 2 \quad (x*z)*(y*z) \leq (x*y)*z,$
- $B \ 3 \quad x * y \leq (\sim y) * (\sim x),$
- $B 4 \quad 0 \leqslant x,$

where $x \leq y$ means x * y = 0, and if $x \leq y, y \leq x$, then we write x = y. There are some axiom systems which is equivalent to $B \mathrel{1}\sim B \mathrel{4}$. For the details, see [1], [2], and [3].

In this note, we shall show the following

Theorem. A B-algebra $M = \langle X, 0, *, \sim \rangle$ is characterized by $L \ 1 \quad x*(\sim y) \leq x*(z*y),$

- $L 2 \quad x * y \leq x * (y * z),$
- L 3 $(x*(y*z))*(x*y) \leq x*(\sim z),$
- $L 4 \quad 0 \leq x$.

The conditions $L \ 1 \sim L \ 4$ are an algebraic formulation of Lukasiewicz axioms of classical propositional calculus.

We first prove $B \Rightarrow L$.

As shown in [1], if $x \leq y$ in a *B*-algebra, then $z * y \leq z * x$ for any $z \in X$. Hence, by *B* 1, we have $x * y \leq x * (y * z)$. On the other hand, by (8) in [1], $z * y \leq -y$. Therefore we have $x * (-y) \leq x * (z * y)$. Next we have the following relation.

$$(x*(y*z))*(x*y) = (\sim (y*z)*(\sim x))*(\sim y*\sim x) \leq (\sim (y*z)*\sim y)*(\sim x) \\ = (y*(y*z))*\sim x \leq x*\sim (y*(y*z)).$$

On the other hand, by $y * z \leq y * z$, we have $y * (y * z) \leq z$. Hence $\sim z \leq \sim (y * (y * z))$. Therefore we have

$$(x*(y*z))*(x*y) \leq x * \sim (y*(y*z)) \leq x * (\sim z),$$

which completes the proof of $B \Rightarrow L$.

Now we shall prove $L \Rightarrow B$.

From L 1 and L 2, we have

(1) $x \leq y * z$ implies $x \leq -z$ and $x \leq y$.

By L 2, we have $(x*y)*x \leq (x*y)*(x*(y*z))=0$. Hence

which is B1. From L3, we have

(3) $x \leqslant \sim z \text{ implies } x \ast (y \ast z) \leqslant x \ast y.$

(4) $x \leqslant \sim z, x \leqslant y \text{ imply } x \leqslant y \ast z.$

By L 1 and (2), we have

$$(((x * x) * y) * \sim x) \leq ((x * x) * y) * (x * x) = 0,$$

hence

 $(x * x) * y \leq \sim x$. (5)By (4), (5), and $(x*x)*y \leq x*x$, we have $(x*x)*y \leq (x*x)*x=0$, and y is arbitrary, hence (6)x * x = 0, i.e. $x \leq x$. Put x = x * y, z = x in (1), then we have $(x * y) * \sim y \leq (x * y) * (x * y) = 0$, hence (7) $x * y \leq \sim y$. In L2, put x = (x*z)*(y*z), y=x, then we have $((x*z)*(y*z))*x \leq ((x*z)*(y*z))*(x*z)=0,$ by (2). Hence $(x * z) * (y * z) \leq x$. (8) $x * z \leq \sim z$ and (3) imply $((x*z)*(y*z))*((x*z)*y) \leq (x*z)*(\sim z)=0,$ hence we have (9) $(x*z)*(y*z) \leq (x*z)*y.$ Put x=(x*z)*(y*z), z=x*z in L1, then by (9), we have $(((x*z)*(y*z))*\sim y) \leq ((x*z)*(y*z))*((x*z)*y) = 0,$ hence $(x*z)*(y*z) \leq \sim y$. (10)By L 1 and (2), we have $((x*z)*(y*z))*\sim z \leq ((x*z)*(y*z))*(x*z)=0,$ hence (11) $(x*z)*(y*z) \leq \sim z$. Next we shall prove B2. By (8) and (10), if we use (4), then we have (12) $(x*z)*(y*z) \leq x*y$, and further by (11), (12), we have (13) $(x*z)*(y*z) \leq (x*y)*z,$ which is axiom B2. Moreover we must prove axiom B 3. By L 2 and (2), we have $((x*y)*z)*x \leq ((x*y)*z)*(x*y)=0.$ By L 1 and (2), we have $((x*y)*z)* \sim y \leq ((x*y)*z)*(x*y)=0,$ and $((x*y)*z)* \sim z \leq ((x*y)*z)*((x*y)*z) = 0.$ Therefore we have (a) $(x*y)*z \leq x$, (b) $(x * y) * z \leq \sim y$. $(x * y) * z \leq \sim z$. (c) hence, using (4), we have

 $(x * y) * z \leq x * z$. This formula and (b) imply $(x*y)*z \leq (x*z)*y.$ (14)Formula (14) implies a commutative law: If $x * y \leq z$, then $x * z \leq y$. (15)Substitute x = x * (x * x), $y = x * (\sim x)$, and z = x * x in (15), then $((x * (x * x)) * (x * \sim x)) * (x * x) \leq (((x * (x * x)) * (x * x)) * (x * \sim x)).$ The right side is equal to 0 by L 3, hence (16) $x * (x * x) \leq x * \sim x$. By the commutative law, $x * (x * \sim x) = 0.$ (17)From (14), we have $(x*z)*(x*y) \leq y*z$ by the commutative law. In the formula, put $y = x * \sim x$, $z = \sim (\sim x)$ then $(x \ast \sim (\sim x)) \ast (x \ast (x \ast (\sim x))) \leq (x \ast \sim x) \ast \sim (\sim x).$ By (7), the right side is 0, and by (17), the second term of the left side is 0, hence $x \leq \sim (\sim x).$ (18)

(14) means that $x \leq y, y \leq z$ imply $x \leq z$. Therefore $x * y \leq x$ and $x \leq \sim (\sim x)$ imply $x * y \leq \sim (\sim x)$. On the other hand, $x * y \leq \sim y$ by (7). Formula (4) implies

$$x * y \leq (\sim y) * (\sim x),$$

which is axiom B 3.

Therefore we complete the proof of Theorem.

References

- K. Iséki: Algebraic formulations of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).
- [2] ----: Axiom systems of B-algebra. Proc. Japan Acad., 41, 808-811 (1965).
- [3] ——: A characterization of Boolean algebra. Proc. Japan Acad., 41, 893-897 (1965).