199. Axiom Systems of B-algebra. II

By Yoshinari Arai and Kiyoshi Iséki
(Comm. by Kinjirô Kunugi, m.J.A., Dec. 13, 1965)

In the first note [2], we gave axiom systems of B-algebra. A B-algebra $M=\langle x, 0, *, \sim\rangle$ is given by the following axioms:

$$
\begin{aligned}
& \text { B } 1 x * y \leqslant x \text {, } \\
& \text { B } 2(x * z) *(y * z) \leqslant(x * y) * z \text {, } \\
& \text { B } 3 x * y \leqslant(\sim y) *(\sim x) \text {, } \\
& \text { B4 } 0 \leqslant x \text {, }
\end{aligned}
$$

where $x \leqslant y$ means $x * y=0$, and if $x \leqslant y, y \leqslant x$, then we write $x=y$. There are some axiom systems which is equivalent to $B 1 \sim B 4$. For the details, see [1],[2], and [3].

In this note, we shall show the following
Theorem. A B-algebra $M=\langle X, 0, *, \sim\rangle$ is characterized by
$L 1 \quad x *(\sim y) \leqslant x *(z * y)$,
$L 2 x * y \leqslant x *(y * z)$,
$L 3(x *(y * z)) *(x * y) \leqslant x *(\sim z)$,
$L 4 \quad 0 \leqslant x$.
The conditions $L 1 \sim L 4$ are an algebraic formulation of Lukasiewicz axioms of classical propositional calculus.

We first prove $B \Rightarrow L$.
As shown in [1], if $x \leqslant y$ in a B-algebra, then $z * y \leqslant z * x$ for any $z \in X$. Hence, by $B 1$, we have $x * y \leqslant x *(y * z)$. On the other hand, by (8) in [1], $z * y \leqslant \sim y$. Therefore we have $x *(\sim y) \leqslant x *(z * y)$. Next we have the following relation.

$$
\begin{aligned}
(x *(y * z)) *(x * y) & =(\sim(y * z) *(\sim x)) *(\sim y * \sim x) \leqslant(\sim(y * z) * \sim y) *(\sim x) \\
& =(y *(y * z)) * \sim x \leqslant x * \sim(y *(y * z))
\end{aligned}
$$

On the other hand, by $y * z \leqslant y * z$, we have $y *(y * z) \leqslant z$. Hence $\sim z \leqslant \sim(y *(y * z))$. Therefore we have

$$
(x *(y * z)) *(x * y) \leqslant x * \sim(y *(y * z)) \leqslant x *(\sim z)
$$

which completes the proof of $B \Rightarrow L$.
Now we shall prove $L \Rightarrow B$.
From $L 1$ and $L 2$, we have
(1) $\quad x \leqslant y * z$ implies $x \leqslant \sim z$ and $x \leqslant y$.

By $L 2$, we have $(x * y) * x \leqslant(x * y) *(x *(y * z))=0$. Hence
(2) $\quad x * y \leqslant x$,
which is $B 1$. From $L 3$, we have
(3) $\quad x \leqslant \sim z$ implies $x *(y * z) \leqslant x * y$.
(4) $\quad x \leqslant \sim z, x \leqslant y$ imply $x \leqslant y * z$.

By $L 1$ and (2), we have

$$
(((x * x) * y) * \sim x) \leqslant((x * x) * y) *(x * x)=0,
$$

hence
(5)

$$
(x * x) * y \leqslant \sim x .
$$

By (4), (5), and $(x * x) * y \leqslant x * x$, we have $(x * x) * y \leqslant(x * x) * x=0$, and y is arbitrary, hence
(6) $\quad x * x=0$, i.e. $x \leqslant x$.

Put $x=x * y, z=x$ in (1), then we have $(x * y) * \sim y \leqslant(x * y) *(x * y)=0$, hence
(7)

$$
x * y \leqslant \sim y .
$$

In $L 2$, put $x=(x * z) *(y * z), y=x$, then we have

$$
((x * z) *(y * z)) * x \leqslant((x * z) *(y * z)) *(x * z)=0
$$

by (2). Hence
(8)

$$
(x * z) *(y * z) \leqslant x
$$

$x * z \leqslant \sim z$ and (3) imply

$$
((x * z) *(y * z)) *((x * z) * y) \leqslant(x * z) *(\sim z)=0,
$$

hence we have
(9)

$$
(x * z) *(y * z) \leqslant(x * z) * y .
$$

Put $x=(x * z) *(y * z), z=x * z$ in $L 1$, then by (9), we have

$$
(((x * z) *(y * z)) * \sim y) \leqslant((x * z) *(y * z)) *((x * z) * y)=0,
$$

hence

$$
\begin{equation*}
(x * z) *(y * z) \leqslant \sim y . \tag{10}
\end{equation*}
$$

By $L 1$ and (2), we have

$$
((x * z) *(y * z)) * \sim z \leqslant((x * z) *(y * z)) *(x * z)=0,
$$

hence
(11)

$$
(x * z) *(y * z) \leqslant \sim z
$$

Next we shall prove $B 2$. By (8) and (10), if we use (4), then we have
(12)

$$
(x * z) *(y * z) \leqslant x * y,
$$

and further by (11), (12), we have
(13)

$$
(x * z) *(y * z) \leqslant(x * y) * z,
$$

which is axiom $B 2$.
Moreover we must prove axiom $B 3$.
By $L 2$ and (2), we have

$$
((x * y) * z) * x \leqslant((x * y) * z) *(x * y)=0 .
$$

By $L 1$ and (2), we have

$$
((x * y) * z) * \sim y \leqslant((x * y) * z) *(x * y)=0,
$$

and

$$
((x * y) * z) * \sim z \leqslant((x * y) * z) *((x * y) * z)=0 .
$$

Therefore we have
(a)
(b)
$(x * y) * z \leqslant x$,
(c)
$(x * y) * z \leqslant \sim y$,
$(x * y) * z \leqslant \sim z$,
hence, using (4), we have

$$
(x * y) * z \leqslant x * z
$$

This formula and (b) imply
(14)

$$
(x * y) * z \leqslant(x * z) * y
$$

Formula (14) implies a commutative law:
(15) If $x * y \leqslant z$, then $x * z \leqslant y$.

Substitute $x=x *(x * x), y=x *(\sim x)$, and $z=x * x$ in (15), then $((x *(x * x)) *(x * \sim x)) *(x * x) \leqslant(((x *(x * x)) *(x * x)) *(x * \sim x)$.
The right side is equal to 0 by $L 3$, hence
(16)

$$
x *(x * x) \leqslant x * \sim x .
$$

By the commutative law,

$$
\begin{equation*}
x *(x * \sim x)=0 \tag{17}
\end{equation*}
$$

From (14), we have $(x * z) *(x * y) \leqslant y * z$ by the commutative law. In the formula, put $y=x * \sim x, z=\sim(\sim x)$ then

$$
(x * \sim(\sim x)) *(x *(x *(\sim x))) \leqslant(x * \sim x) * \sim(\sim x) .
$$

By (7), the right side is 0 , and by (17), the second term of the left side is 0 , hence

$$
\begin{equation*}
x \leqslant \sim(\sim x) \tag{18}
\end{equation*}
$$

(14) means that $x \leqslant y, y \leqslant z$ imply $x \leqslant z$. Therefore $x * y \leqslant x$ and $x \leqslant \sim(\sim x)$ imply $x * y \leqslant \sim(\sim x)$. On the other hand, $x * y \leqslant \sim y$ by (7). Formula (4) implies

$$
x * y \leqslant(\sim y) *(\sim x)
$$

which is axiom $B 3$.
Therefore we complete the proof of Theorem.

References

[1] K. Iś́ki: Algebraic formulations of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).
[2] -: Axiom systems of B-algebra. Proc. Japan Acad., 41, 808-811 (1965).
[3] -: A characterization of Boolean algebra. Proc. Japan Acad., 41, 893897 (1965).

