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194. On Near-algebras of Mappings on Banach Spaces

By Sadayuki YAMAMURO
(Comm. by Kinjiré6 KUNUGI, M.J.A., Dec. 13, 1965)

1. A real vector space A is called a mear-algebra if, for any
pair of elements f and g in 4, the produet fg is defined and
satisfies the following two conditions:

(1) (fph=rflgh); (2) (f+9h=fh+gh.

The left distributive law: &(f+9)=hf+hg is not assumed.
Therefore, a near-algebra is a near-ring which has firstly been
defined by [4, pp. 71-74].

A subset I of a near-algebra 4 is called an ideal if (1) I is a
linear subset of Ji; (2) fel, ge A imply fg,9f¢€l.

Let E be a real Banach space. Let f and g are mappings of
E into E. We define the linear combination af+ Bg (o and S are
real numbers) by

(af+ Bg)x)=af(x)+ Bg(x) for every xze K,
and the product fg by
(fo)(®)=sLg(x)] for every xz¢ E.

Let A4 be a near-algebra whose elements are mappings of FE
into E. If 4 contains the Banach algebra L of all bounded linear
mappings of K into E (the norm of L is ||l]| = supllll(x)ll for
le L), then, for any ideal I of A, the set =

KL)=INL
is an ideal of the Banach algebra L.

Examples. Let B be the near-algebra of all bounded (i.e.,
transforms every bounded set into a bounded set) and continuous
mappings. The following subsets are ideals (ef. [3]).

1. The set I(E) of all constant mappings, in other words, I(E)
is the set of all mappings C.,(a€ E) such that C,(x)=a for every
xe K.

2, The set C of all compact (i.e., transfroms every bounded
set into a compact set) and continuous mappings.

3. The set EB of all entirely bounded (i.e., transforms the
space E into a bounded set) and continuous mappings.

It is obvious that B contains L and

IEYNL=EBNL=0 (zero-ideal of L);
CNL=CL (the set of all compact continuous
linear mappings on E).
2. A mapping f of E into E is said to be (Fréchet) differ-
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entiable at ac E if there exists a mapping [ € L such that
fla+x)—f(a)=lx)+7r(a, x) for every xec K
where lim (e, @) _
nzi—-o |||

This mapping ! depends an a and denoted by f'(a).

It is evident that every !¢ L is differentiable at every point of
E and l'(a)=1 for every ac E.

Let /4 be a near-algebra whose elements are differentiable at
every point of E. An ideal I of 4 is called a d-ideal if it satisfies
the following conditions:

felI if and only if f'(x)el for every xe E. When A=L,
every ideal of A is obviously a d-ideal.

Let us assume that ./ contains L. Then, the following lemmas
can be proved easily.

Lemma 1, Let I, and I, be d-ideals of A. Then,

(1) I(L)=IL(L) tmplies I=1I;

(2) LS I(L) implies L&,

Lemma 2. If I is a d-ideal such that LCI, then I=.

3. A mapping f of E into E is said to be compactly differ-
entiable if it is differentiable at every point and the mapping f’
of E into L is compact., The set of all compactly differentiable
mappings of F into E is denoted by D,.

Lemma 3. (1) LCD,; (2) D,.CB; (3) D, is a near-algebra.

Proof. (1) Since, for le L, U'(x)=0 for every wxecE, the
image U'/(E) is a one-point-set of L.

(2) For the set Br={xec E|||x|| <r}, since f’ is a bounded
mapping of E into L, there exists «>0 such that

1f' (@) ]| fa for every x € Br.
Then, by [2, p. 37, Lemma 3.3], we have
[| f(x)—Ff0) || =ar for every x € Br,
Therefore, f transforms every bounded set into a bounded set. The
continuity of f follows from the differentiability.

(3) We have only to prove that fge D, if f and g are in D,.
Since (fg)'(x)=s"[g(x)]g'(x) for every xc E (cf. [2, p.41]), for any
sequence {y,}C(f9)'(B,), there exists a sequence {x,} such that

v.=f"l9(x,)]9'(,) and x,€B, (n=1,2,--:).
Since ¢’ is compact, there exists a subsequence {z,} of {x,} such
that ¢'(x,)—l.e L in L. Since the sequence {g(x,)} is bounded by (2)
above, there exists a subsequence {x;} of {x,} such that f'[g(x,)]—
l,e L in L. Therefore, in the Banach algebra L, the sequence
{f'Lg(x;)]19’(x;)} converges to l,l, € L.
In this near-algebra D,, we firstly characterize the set I(H).
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Theorem 1., (1) KE) is a d-ideal of D,;

(2) For any non-zero ideal I of D,, I(E)CI.

Proof. (1) Since C)(x)=0 for every x ¢ E, I(E)CD,. Moreover,
since

aC,+BC,=C,,rp and C,f=C, for every fe D,
I(E) is obviously an ideal of D,. Therefore, we have only to prove
that I(E) is a d-ideal.

(i) If feI(E), then f'(x)=0¢ I(E) for every x¢c E.

(ii) If f'(x)e I(F) for every xe K, then f'(x)=0 for every
xe E, In fact, if f’(a)#0, for an element b such that f’(a)(d)+0,
we have f’(a)(b)+f"(a)(2b), which means that f'(a) ¢ I{(E). Therefore,
fe I(E).

(2) Let feI be an arbitrary non-zero element, Then, C,=
C.feI for every ac E, ie., I(E)CI.

Secondly, we characterize the set I(C)=CND, of all compact
mappings which are compactly differentiable at every point.

Theorem 3. (1) I(C) is a proper d-ideal of D,;

(2) For any d-ideal I of D,, if CLCI, then I(C)CI.

When E is a separable Hilbert space,

(3) For any proper d-ideal I of D,, we have ICI(C).

Proof. (1) Since C and D, are linear, I(C) is obviously linear.
Assume that fe I(C) and ge D,. By Lemma 3, fg and gf belong to
D,. Moreover, for a bounded set B, g(B) is bounded by Lemma 3
and f(B) is contained in a compact set. Therefore, f[g(B)] and
g[f(B)] are contained in compact sets, which means that f¢ and
gf belong to I(C). Finally, we prove that I(C) is a d-ideal. If
feIC), then f'(x)e L is compact and continuous for every x e F
(cf. [2, p. 51, Theorem 4.7]), which means that f'(x)e I(C) for
every x€ FE. Conversely, if f'(x)e I(C) for every x€ E, then by
[2, p.bl, Theorem 4.8], we have fe I(C).

(2) For any feIC), f'(x)e CL for every xc E, hence it
follows that f'(x)e I for every xe€ E. Since I is a d-ideal, fe I.

(3) Let I be a proper d-ideal of D,. I(L)=INL is an ideal
of L. Then, as Calkin has proved in [1], we have either I(L)=L
or I(L)cCL. If KL)=L, then LCI. By Lemma 2, we have
I=D,, which shows that I is not proper. If I(L)CCL, then

INLCCL=CNL=IC)NL.
Therefore, by Lemma 1, we have ICI(C).
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