11. A Note on Riemann's Period Relations. II

By Kunihiko Matsui

(Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1966)

1. Basic notations. Let W be a Riemann surface of infinite genus and (F_n) its exhaustion in Noshiro's sense (Noshiro [11]), then there exists on W a canonical homology basis of A-type with respect to (F_n) such that $A_1, B_1, \dots, A_{k(n)}, B_{k(n)}$ form a canonical homology basis of $F_n \pmod{\partial F_n}$ and $A_i \times B_j = \delta_j^i, A_i \times A_j = B_i \times B_j = 0$ (Ahlfors [3]). We denote such a basis by C.H.B. $(F_n)_A$. Especially when (F_n) is a canonical exhaustion, there exists a special C.H.B. $(F_n)_A$ which satisfies the following condition: the cycles A_k, B_k with k > k(n) lie outside of F_n for all n (Ahlfors-Sario [4]). We denote such a special basis by C.H.B. $(F_n)_B^q$ and call it a canonical homology basis of B-type with respect to the exhaustion $(F_n)^q$, where $(F_n)^q$ denotes a canonical exhaustion of W.

Definition 1. Let Γ_1, Γ_2 be two subspaces in Γ_h . We will say that the generalized bilinear relations between Γ_1 and Γ_2 hold with respect to (F_n) and C.H.B. $(F_n)_A$ if we have for all $\omega_1 \in \Gamma_1$ and all $\omega_2 \in \Gamma_2$

$$(\omega_1, \omega_2^*) = \lim_{n \to \infty} \sum_{k=1}^{k(n)} \left(\int_{A_k} \omega_1 \int_{B_k} \bar{\omega}_2 - \int_{A_k} \bar{\omega}_2 \int_{B_k} \omega_1 \right).$$
(1.1)

Analogously we will say that the special bilinear relations between Γ_1 and Γ_2 hold if we have (1.1) for $\omega_1 \in \Gamma_1$ with only a finite number of non zero periods.

2. Special bilinear relation. Let $\sigma(A_k)$, $\sigma(B_k)$ be reproducing differentials of class Γ_{k0} associated with cycles A_k , B_k respectively, and let $\tilde{\sigma}(A_k)$, $\tilde{\sigma}(B_k)$ be regular distinguished reproducing differentials of class $\Gamma_{k0} \cap \Gamma_{kse}^*$ associated with cycles A_k , B_k respectively (Ahlfors-Sario [4]). For $\omega_1 \in \Gamma_1$ with only a finite number of non zero periods we define $T\omega_1$ and $\tilde{T}\omega_1$ as follows:

$$T\omega_1 = \sum_{k=1}^{\infty} b_k \sigma(A_k) - a_k \sigma(B_k),$$
 (a finite sum) (2.1)

$$\widetilde{T}\omega_1 = \sum_{k=1}^{\infty} b_k \widetilde{\sigma}(A_k) - a_k \widetilde{\sigma}(B_k),$$
 (a finite sum) (2.2)

where $(A_i, B_i) = \text{C.H.B.} (F_n)_A, a_k = \int_{A_k} \omega_1, b_k = \int_{B_k} \omega_1.$

Theorem 1. The maximal class of Γ_2 such that the special bilinear relations between $\Gamma_1 = \Gamma_{h0}$ and Γ_2 hold, is closure $(\Gamma_{h0} + \Gamma_{he})$.

Proof. We put $max \Gamma_2 = \Gamma'$. From the assumption we have for arbitrary $\omega_1 \in \Gamma_1 = \Gamma_{h0}$ and arbitrary $\omega_2 \in \Gamma'$ K. MATSUI

[Vol. 42,

$$(\omega_1, \omega_2^*) = \sum_k \left(\int_{\mathcal{A}_k} \omega_1 \int_{\mathcal{B}_k} \bar{\omega}_2 - \int_{\mathcal{A}_k} \bar{\omega}_2 \int_{\mathcal{B}_k} \omega_1 \right) + (\omega_1 - T\omega_1, \omega_2^*)$$
$$= \sum_k \left(\int_{\mathcal{A}_k} \omega_1 \int_{\mathcal{B}_k} \bar{\omega}_2 - \int_{\mathcal{A}_k} \bar{\omega}_2 \int_{\mathcal{B}_k} \omega_1 \right).$$
(2.3)

On the other hand from (2.1) we obtain $\omega_1 - T\omega_1 \in \Gamma_{he} \cap \Gamma_{h0}$. Therefore, for $\omega_2 \in \Gamma'$, we have $\omega_2^* \in (\Gamma_{he} \cap \Gamma_{h0})^{\perp}$, hence $\Gamma' \subset \text{closure} (\Gamma_{h0} + \Gamma_{he})$. Conversely, for $\omega_2 \in \text{closure} (\Gamma_{h0} + \Gamma_{he})$, we have $(\omega_1 - T\omega_1, \omega_2^*) = 0$, because $\omega_1 - T\omega_1 \in \Gamma_{h0} \cap \Gamma_{he}$. Therefore we get $\Gamma' \supset \text{closure} (\Gamma_{h0} + \Gamma_{he})$.

Corollary 1. (Accola [1]). The validity of the special bilinear relations between $\Gamma_1 = \Gamma_{h_0}$ and $\Gamma_2 = \Gamma_{h_{se}}$ is equivalent to $\Gamma_{h_m} = \Gamma_{h_0} \cap \Gamma_{h_e}$.

Proof. From Theorem 1 we can put $\Gamma_{hse} = \text{closure} (\Gamma_{h0} + \Gamma_{he})$ and therefore we have $\Gamma_{hm} = \Gamma_{h0} \cap \Gamma_{he}$. Conversely if $\Gamma_{hm} = \Gamma_{h0} \cap \Gamma_{he}$, we have closure $(\Gamma_{h0} + \Gamma_{he}) = \Gamma_{hse}$ and from Theorem 1 special bilinear relations between $\Gamma_1 = \Gamma_{h0}$ and $\Gamma_2 = \Gamma_{hse}$ hold.

Theorem 2. The maximal class of Γ_2 such that the special bilinear relations between $\Gamma_1 = \Gamma_{hse}$ and Γ_2 hold, is Γ_{ho} .

Proof. We put $\Gamma' = max \Gamma_2$. From (2.1), (2.3) and the assumption we have for $\omega_2 \in \Gamma' \; \omega_2^* \perp \Gamma_{he}$, because $\omega_1 - T\omega_1 \in \Gamma_{he}$, therefore $\Gamma' \subset \Gamma_{h0}$. Conversely we can get $\Gamma_{h0} \subset \Gamma'$ (Accola [1] or Ahlfors-Sario [4]). Consequently we have $\Gamma_{h0} = \Gamma'$.

Corollary 2. (Mori [10]). A Riemann surface W is of class O_{KD} if and only if the special bilinear relations between $\Gamma_1 = \Gamma_{hse}$ and $\Gamma_2 = \Gamma_{hse}$ hold.

We can prove this by the same way as in Corollary 1.

Remark 1. A Riemann surface which satisfies the condition of Theorem 1 in Matsui [9] or Theorem 1 in Kobori and Sainouchi [6] belongs to O_{KD} .

Theorem 3. The maximal class of Γ_2 such that the special bilinear relations between $\Gamma_1 = \Gamma_{hs} \cap \Gamma_{hse}$ and Γ_2 hold, is $\Gamma_{h0} + \Gamma_{he} \cap \Gamma_{he}^*$.

Proof. From (2.1), (2.3) and the assumption we have for $\omega_2 \in \Gamma' = \max \Gamma_2 \ \omega_2 \perp \Gamma_{hs}^* \cap \Gamma_{he}^*$, because $\omega_1 - T\omega_1 \in \Gamma_{hs} \cap \Gamma_{he}$. Therefore we get $\Gamma' \subset \Gamma_{h0} + \Gamma_{he} \cap \Gamma_{he}^*$. Conversely for $\omega_2 \in \Gamma_{h0} + \Gamma_{he} \cap \Gamma_{he}^*$ we have

 $(\mathcal{L}_1 - T\omega_1, \omega_2^*) = 0, \text{ because } \Gamma_{hs}^* \cap \Gamma_{he}^* \perp (\Gamma_{h0} + \Gamma_{he} \cap \Gamma_{he}^*).$ Therefore we have $\Gamma' \supset \Gamma_{h0} + \Gamma_{he} \cap \Gamma_{he}^*.$

Corollary 3. (Mori [10]). The validity of the special bilinear relations between $\Gamma_1 = \Gamma_{hs} \cap \Gamma_{hse}$ and $\Gamma_2 = \Gamma_{hse}$ is equivalent to $\Gamma_{he} \cap \Gamma_{hse}^* \subset \Gamma_{he}^*$.

Theorem 4. The maximal class of Γ_2 such that the special bilinear relations between $\Gamma_1 = \Gamma_{hse} \cap \Gamma_{h0}^*$ and Γ_2 hold, includes the class

 $(closure (\Gamma_{h0} + \Gamma_{hN} \cap \Gamma_{hN}^*)) \cap \Gamma_{hse}$ where Γ_{hN} is the orthogonal complement of $\Gamma_{hse} \cap \Gamma_{h0}^*$ in Γ_h .

Proof. From (2.2), (2.3) and the assumption we get

 $\omega_1 - \widetilde{T}\omega_1 \in \Gamma_{he} \cap (\Gamma_1 + \Gamma_1^*).$

On the other hand

$$\begin{split} \Gamma_{hse} \cap (\text{closure} \left(\Gamma_{h0} + \Gamma_{hN} \cap \Gamma_{hN}^*\right)) \\ = \Gamma_{hse} \cap \left(\Gamma_{h0}^{\perp} \cap (\Gamma_1^{\perp} \cap \Gamma_1^{\perp}^*)^{\perp}\right)^{\perp} \subset \Gamma_{hse} \cap (\Gamma_{he}^* \cap (\Gamma_1 + \Gamma_1^*))^{\perp}. \end{split}$$
Therefore, for $\omega_2 \in (\Gamma_{hse} \cap \text{closure} (\Gamma_{h0} + \Gamma_{hN} \cap \Gamma_{hN}^*))$, we have $(\omega_1 - \widetilde{T}\omega_1, \omega_2^*) = 0. \end{split}$

Consequently $max \Gamma_2$ includes the class $\Gamma_{hse} \cap (\operatorname{closure}(\Gamma_{h0} + \Gamma_{hN} \cap \Gamma_{hN}^*))$.

3. Generalized bilinear relation. Let C be a cycle on Ω which is an elementary domain on W (Kusunoki [8]), $(C)_{\alpha}$ a family of rectifiable curves on Ω which are homologous to C on Ω , and let (C) be a family of rectifiable curves which are homologous to C on W.

Lemma 1. (Hersch [5], Accola [2], and Kusunoki [7])

$$\lambda(A_k)\lambda(B_k) \ge 1, \lambda(A_k)_{\varrho}\lambda(B_k)_{\varrho} \ge 1.$$

$$||\sigma_{\varrho}(A_k)||_{\varrho}^2 \le \lambda(A_k)_{\varrho}, ||\sigma_{\varrho}(B_k)||_{\varrho}^2 \le \lambda(B_k)_{\varrho} \}$$
(3.1)

where $\lambda(C)_{\alpha}$ is the extremal length of $(C)_{\alpha}$ and $\sigma_{\alpha}(A_{k})$, $\sigma_{\alpha}(B_{k})$ are reproducing differentials on Ω associated with the cycles A_{k} , B_{k} respectively.

Let us consider an open Riemann surface W of infinite genus and its canonical exhaustion $(F_n)^q$, and for each n we define $T_{F_n}\omega_2$ as follows:

$$T_{F_n}\omega_2 = \sum_{k=1}^{k(n)} b_k \sigma_{F_n}(A_k) - a_k \sigma_{F_n}(B_k)$$
(3.2),

where $(A_i, B_i) = \text{C.H.B.} (F_n)_A^q$, $a_i = \int_{A_i} \omega_2$ and $b_i = \int_{B_i} \omega_2$.

Lemma 2. Let $(A_i, B_i) = C.H.B. (F_n)_A^q$ $((F_n)^q: a canonical exhaustion)$. Choose $\omega_1 \in \Gamma_{h0}$ and $\omega_2 \in \Gamma_{hse}$, and decompose ω_1 such that $\omega_1 = \omega_{1h0F_n} + \omega_{1heF_n}^*$ on F_n . Then the relation

$$(\omega_1, \omega_2^*) = \lim_{n \to \infty} \sum_{k=1}^{k(n)} \left(\int_{A_k} \omega_1 \int_{B_k} \bar{\omega}_2 - \int_{A_k} \bar{\omega}_2 \int_{B_k} \omega_1 \right)$$
(3.3)

is true if and only if

$$|(\omega_{1heF_n^*}, (T_{F_n}\omega_2)^*)_{F_n}| \to 0 \text{ as } F_n \to W.$$
(3.4)

Proof. We have $(\omega_1, \omega_2^*)_{W-F_n} \to 0$ as $F_n \to W$ and from (3.2) $\omega_2 - T_{F_n} \omega_2 \in \Gamma_{he}(F_n)$ where $\Gamma_{he}(F_n)$ is the class of harmonic exact differentials on F_n . Therefore we have

 $(\omega_1, \omega_2^* - (T_{F_n}\omega_2)^*)_{F_n} = (\omega_{1heF_n^*}, \omega_2^* - (T_{F_n}\omega_2)^*)_{F_n^*}$ Consequently from the assumption it follows that

$$\begin{array}{l} (\omega_1, \, \omega_2^*) = \lim \, (\omega_1, \, \omega_2^*)_{W-F_n} + \lim \, (\omega_1, \, (T_{F_n} \omega_2)^*)_{F_n} \\ + \lim \, (\omega_{1heF_n^*}, \, \omega_2^*)_{F_n} - \lim \, (\omega_{1heF_n^*}, \, (T_{F_n} \omega_2)^*)_{F_n} \\ = \lim \, (\omega_1, \, (T_{F_n} \omega_2)^*)_{F_n}, \qquad \text{q.e.d.} \end{array}$$

No. 1]

Theorem 5. If there exists an exhaustion $(F_n)^q$ and a C.H.B. $(F_n)_B^q$ which satisfy the following conditions:

$$\sum_{A_k, B_k \subset F_{n-1}^i} \sqrt{\lambda(A_k)_{F_{n-1}^i}} \langle \langle B_k \rangle_{F_{n-1}^i} \rangle \leq K \quad (for all \ n \ and \ i)$$
(3.5)

where $(A_k, B_k) = C.H.B. (F_n)_B^q$ and $F_n - \overline{F}_{n-1} = \sum F_{n-1}^i (F_{n-1}^i)$: a component), then the generalized bilinear relations between Γ_{h_0} and $\Gamma_{h_{se}}$ hold with respect to $(F_n)^q$ and $C.H.B. (F_n)_B^q$.

Proof. From the assumption and the Schwarz's inequality we have

$$\begin{split} \sum_{\substack{A_k \cdot B_k \subset F_{n-1}^i \\ A_k \cdot B_k \subset F_{n-1}^i \\ \leq \sum_{\substack{A_k, B_k \subset F_{n-1}^i \\ A_k = K \mid || \omega_2 \mid ||_{F_{n-1}^i} \mid || \omega_{1heF_n} \mid ||_{F_{n-1}^i} \sqrt{\lambda(A_k)_{F_{n-1}^i} \lambda(B_k)_{F_{n-1}^i}}} \\ \end{split}$$

Therefore we get

$$\begin{split} |(\omega_{{}_{1heF_n^*}},(T_{F_n}\omega_2)^*)F_n| &\leqslant K\sum_k^n ||\omega_2||_{F_k-F_{k-1}} ||\omega_{{}_{1heF_n}}||_{F_k-F_{k-1}} \\ &\leqslant K \Big(\sum_k^n ||\omega_2||_{F_k-F_{k-1}}^2 \cdot \Big(\sum_k^n ||\omega_{{}_{1heF_n}}||_{F_k-F_{k-1}}\Big)^{\frac{1}{2}} \cdot \left(\sum_k^n ||\omega_{{}_{1heF_n}}||_{F_k-F_{k-1}}\right)^{\frac{1}{2}} \\ &\leqslant K ||\omega_2||_{F_n} ||\omega_{{}_{1heF_n}}||_{F_n}. \end{split}$$

On the other hand $||\omega_{{}_{1heF_n}}||_{F_n} \rightarrow 0$ as $F_n \rightarrow W$ (Ahlfors-Sario [4]), we obtain

$$|(\omega_{1heF_n^*}, (T_{F_n}\omega_2)^*)_{F_n}| \rightarrow 0 \text{ as } F_n \rightarrow W.$$

Therefore from Lemma 2 the proof is complete.

Corollary 4. If there exists a $(F_n)^q$ and a C.H.B. $(F_n)^q_B$ such that for all n and i

$$\lambda(A_k)_{F_{n-1}^i} \leqslant K, \quad \lambda(B_k)_{F_{n-1}^i} \leqslant K \\ the genus of F_{n-1}^i = p_{n-1}^i \leqslant P, \end{cases}$$

$$(3.6)$$

then the generalized bilinear relations between Γ_{h0} and Γ_{hse} hold with respect to $(F_n)^q$ and C.H.B. $(F_n)^q_B$.

Remark 2. If the condition (3.6) is satisfied, we can get easily for all $\omega \in \Gamma_{hse}$

$$\sum |a_k|^2 + |b_k|^2 < \infty$$

where $a_k = \int_{A_k} \omega, b_k = \int_{B_k} \omega$. Analogously we can get for all $\omega_1 \in \Gamma_{h_0}$ $\lim_{n \to \infty} \left(\sum_{k=1}^{k(m)} \left(\left| \int_{A_k} \omega_{1heF_n^*} \right|^2 + \left| \int_{B_k} \omega_{1heF_n^*} \right|^2 \right) \right) = 0.$

Remark 3. We can construct an example of the surface which satisfies (3.6) and does not belong to O_{AD} . But in the present step it is not sure that there exist surfaces which belong to O'' (Kusunoki [7]) and do not satisfy (3.6).

Corollary 5. If the condition (3.5) is satisfied, from Corollary 1 we have $\Gamma_{hm} = \Gamma_{h0} \cap \Gamma_{he}$.

No. 1]

References

- [1] Accola, R: The bilinear relation on open Riemann surfaces. Trans. Amer. Math. Soc., 96, 145-161 (1960).
- [2] ——: Differentials and extremal length on Riemann surfaces. Proc. Nat. Acad. of Sciences, **46** (4) (1960).
- [3] Ahlfors, L. V: Normalintegrale auf offenen Riemannschen Flächen. Ann. Acad. Sci. Fenn. Ser. A. I. 35 (1947).
- [4] Ahlfors, L. V., and Sario, L: Riemann Surfaces. Princeton (1960).
- [5] Hersch, J: Longueurs extrémales et théorie des fonctions. Comm. Math. Helv., 29, 301-337 (1955).
- [6] Kobori, A., and Sainouchi, Y: On the Riemann's relation on open Riemann surfaces. J. Math. Kyoto Univ., 2, 11-23 (1962).
- [7] Kusunoki, Y: On Riemann's period relations on open Riemann surfaces. Mem. Coll. Sci. Univ. of Kyoto, Ser. A, Math., **30**, 1-22 (1956).
- [8] ——: Theory of Abelian integrals and its applications to conformal mapping. Mem. Coll. Sci. Univ. of Kyoto, Ser. A, Math., 32, 235-258 (1959).
- [9] Matsui, K: A Note on Riemann's period relation. Proc. Japan Acad., 40 (1964).
- [10] Mori, M: Contributions to the theory of differentials on open Riemann surfaces. J. Math. Kyoto Univ., 4 (1964).
- [11] Noshiro, K: Cluster Sets. Berlin (1960).