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4. Connection of Topological ibre Bundles

By Akira ASADA
(Comm. by Kinjir6 KUNUGI, .J..., Jan. 12, 1966)

In Asada E2], we give a general theory of connections of
topological vector bundles. There a connection form {} of the given
bundle has following property: The value of 1+0 belongs in G,
the structure group of . Therefore starting from {s}={lq-O}, we
can construct a theory of connections of arbitrary topological fibre
bundles without using the ring A of Asada _2. To state this theory
is the purpose of this note. But we don’t know whether there exists
or not a connection form for an arbitrary fibre bundle .

1. Connection of fibre bundles. We denote by X a topological
space, a topological fibre bundle over X with structure group G.
The transition functions of are denoted by gr.

As in Asada [2, nl, we denote the group of continuous maps
from V(2,(U)) to G with equivalence relation fifi, if and only if
fil W=fi. IW for some neighborhood W(z/,(U)) of z/,(U) in U... U
by C’(U, G) and set
C’(U, G)-{flfe C’(U, G),f(..., x, x, ...)=1 for all i, 0_is-1}.
Then we define the sheaves (3-?() and _ff--_q() by

_ff: the sheaf of germs of those maps {f},feC(U, G),
gr(Xo)-f(Xo, ..., x)gr(x)--fr(Xo, ..., x).

_ff: the subsheaf of _a consisted those elements {f} that
f e C( U, G) for all U.

Definition. If {s} e H(X, .q), then we call {s} is a connection
form of .

Note. As usual, if {s} is a connection form of {gv}, {U’} is a
refinement of {U} and g,,--gv[ U’ V’, then {s,}, s,--sl U’,
becomes a connection form of {g,v,}. We identify {s} and this {s,}.
On the other hand, if {s} is a connection form of {gr} then
{h(xo)S(Xo, x)h(x)-} is a connection form of {hgrhl}. We identify
(s} and this {hsh}. For the simplicity, we identify {s} and the
equivalence class of {s}.

Lemma 1. H(X, ) is non-empty if and only if H(X, )
is non-empty.

Lemma 2. {1} belongs in H(X, ) if and only if {1} belongs
in H(X, _q).

Theorem 1. is equivalen o a bundle with a$ally disconnecg

structure group if and only if {1} becomes a connection form of .
Proof. If {hgh} is locally constant, then {s(Xo, X)}--
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{h(xo)h(x)-} belongs in H(X, _q). On the other hand, if {1}
belongs in H(X, _), then {g} is locally constant. Hence we get
the theorem.

Corollary. The connected component of the structure group

of is reduced to H, a subgroup of G, if there exists a connection

form {s} of such that the class of the value of {s} in H\G/H is
equal to 1.

2. Elements of C(X, G) derived from connection forms. We
denote by X the associated principal bundle of . The projection
from X to X is denoted by 7c-. The homeomorphism from -(U)
to UxG is denoted by .-(x, a) is denoted by (x)(a). Then
setting

ac=(x)(ac), a=(x)(a)e X, c e G,
G operates on Xa.

Theorem 2. We set
1 ) C(X, G)- {sis e C(X, G), s(a, b)=a-s(, )b,, e Xa, a, be G}.
Then there is a bijection t-ta between H(X, ) and C(X, G)a.

Proof. If {s} belongs in H(X, ), then we set
t({s})((x)-(a), (y)-(b))-a-s(x, y)b.

By the definition of , this definition of t does not depend on the
choice of U and t({s}) belongs in C(Xa, G)a. On the other hand, if
s belongs in C(Xa, G)e, then setting

-(s)(x, y)--as((x)(a), 9(y)(b))b-,
t-(s)(x, y) does not depend on the choice of a, b and {t-(s)} belongs
in H(X, ). Moreover, we have tt-(s)-s, t-t({s})= {s}. Hence
we obtain the theorem.

Corollary. Setting

T(X, G)= {r r e C(X, G), r(aa, b)=a-r(, )a},
we get
2 C(Xa, G),= T(Xa, G)s, s e C(X,,

if C(Xa, G)a
Note. Similarly, we can prove that there is a bijection t, between

H(Xa/,, ) and C(Xa, G), for arbitrary subgroup H of G. Here
Xa/, is the associated G/H-bundle of , H(Xe/,, ) is the set of
connections of a/,*() and C(Xa, G), is given by

C(Xe, G),= {sis e C(X, G), s(a, Zb)=a-s(,
a, e Xa, a, be H}.

By theorem i and above note, we obtain (cf. 3),
Theorem 4’. Xa is induced from a covering space of Xa/, if

and only if {1} belongs in tj(C(Xe, G),). Here t means the bijection

from H(X, _q-’) to C"(X, G).
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a cross-section from X if and only if there exists a continuous
function s: Xa-G such that
( 3 s(aa)= s(a)a, a e X, a e G.

Lemma 4. If sl, s.: Xa--G satisfy (2), then setting
( 4 s(a,
s(a, ) becomes a connection form of X.

Since G is a non-abelian group in general, although C(Xa, G)
and : C(Xa, G)--.C+(X, G) are defined for all r, $+5:/: 1 if r>__ 1
in general. But /0 is equal to 1 for all G. Strictly, f is given by

(if)(Zo, x, x)=f(x, x)f(Xo, x)-f(Xo, x).
We denote ker. by Z(X, G).

Definition. If s belongs in C(X, G), then we call s the
curvature form of s.

By definition, if s is a connection form, then we get
( 5 ) (s)(aa, b, c)=b-(s)(a, , )b.

Note. We define the sheaf _5’()=()() as follows.
(): the sheaf of germs of those maps {f}, f e C(U, G) and

g(x)-if(Xo, x, x)g(x)--f(Xo, x, x).
Then we can define the map from H(X, ) to H(X, ’) and we
call ({s}) is the curvature form of {s}. Moreover, the following
diagram is commutative

C(X, a)a.. T(X, G)

Ho(X, ) . ,Ho(X,
where T(X, G) and t’ are given by

T(Xa, G)= {r r e C(X, G), r(aa, b, /c)= b-lr(a, , /)b},
t’({fu})((x)(a), (y)(b), (z)(c))-b-f(x, y, z)b.

Lemma 5. If is an H-bundle and H is a subgroup of G,
then to denote i the inclusion from H to G, we have the following
commutative diagram.

H(X, _(i*(]))).. ,Ho(X, ()(i*(])))

H(X, (v)) H(X,
Theorem :. (cf. 2, theorem 2, [7, 8). If the value of a

curvature form of belongs in H, a subgroup of G, then the con-
nected component of the structure group of is reduced to H.

Corollary. If has a connection form which is a cocycle, then
Xa is induced from a representation of (X) in G.

Similarly, if we use the notion of curvature forms, theorem 4’
is refined as follows.
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Theorem 4. Xa is induced from a covering space of Xa,,
where H is a subgroup of G, if and only if I belongs in $(C(Xa, G)),
or equivalently
( 6

4. Associated vector bundle of a topological fibre bundle. To
show the relations between above theory of connections and the theory
given in 2, first we construct an associated vector bundle of .

We denote by F the fibre of and assume that F has sufficiently
many continuous functions. We denote by C(F) the topological vector
space over R consisted by all real valued continuous functions on F
with compact open topology. The ring of all linear operators of C(F)
is denoted by R(C(F)).

For T e R(C(F)), f, ..., f e C(F), a compact set K of F, we set
U(T, f, ..., f,, K, e)- {SIl(Tf)(x)-(Sf)(x) I< e, x e K, 1 <_ i

_
n}.

Then taking {U(T, fi, ...,f, K, e)} to be open basis of R(C(F)),
R(C(F)) becomes a topological ring. (_6, 33).

Lemma 6. For a e G, fe C(F), we set
7 ) ((a)f)(x)--f(a-(x)).
Then t(a) belongs in R(C(F)) and the map : G---R(C(F)) is a
continuous monomorphism.

Note. t is not a homeomorphism in general. But we obtain
Lemma 7. We assume that F is a C-class manifold and G

is a group of C-diffeomorphisms of F with C’-topology. (r’_r).
(cf 1). Here C-manifold, C-diffeomorphism, and -topology mean
topological manifold, homeomorphism and compact open topology.
The topological vector space consisted by all C’-class functions on
F with C’-topology is denoted by C’(F) and the ring of all linear
operators of C’(F) is denoted by R(C’(F)). Then if we take
U(T,A, K, e)

{Z D(Tf)(x)-D(Zf)(x) ]< e, x e K, p I_ r’, 1

_
i

_
n},

xl xn
to be open basis of R(C’(F)), the map : G--R(C’(F)) defined by (7)
is a homeomorphism.

In the rest, we denote the associated C(F)-bundle (C’(F)-bundle)
of by v()(v’()), then by lemma 7, if is an H0(n)-bundle (H[’’(n)
bundle (cf. [1)) then the correspondence --v() (-*v’()) is a bijection.. Relations between the connections of this note and that of
[_2. Since v() is a vector bundle, we can define its s-cross-sections.
(_2, n2). We can also define the addition of the elements of G
and we get

Theorem o If {s} is a connection form of , then setting
{0}- {s-- 1}, we have
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8 ) (d+ O)f---- t(gv)(d+ Ov)fv,
for all f e C"(X, v()), s>_O. Conversly, if he collection {0},
O e C*(U, R(C(F))) satisfies (8) and he value of 1+0 belongs in
(G)=G, $hen seing s=l+0, {s} belongs in H(X, ) if is a
homeomorphism.

Noe. By the proof of theorem 1 of 2, we know that if X is
a paraeompaet normal topological space, then there always exists a
collection {0}, O e C*(U, R(C(F))) which satisfies (8).

Since we obtain
( 9 dOv+00 sv(Xo, x)sv(xz, x)- sv(Xo, x),
if {0}= {s-l}, the definition of the curvature form of a connection
form must different from the definition of this note if we use the
definition of curvature forms of [2. But theorem 3 of this note
and theorem 2 of [2 show that there must be relations between
curvature forms defined by the right hand side of (9) and defined as
(t({sv})). For example, we obtain

(10) (t({s}))(Xo, x, x)=l if and only if
s(Xo, x)s(x, x)-s(Xo, x)=0.

Definition. {O}={dO+OO} is called a G-valued curvature
form if the value of l+0v belongs in G.

By lemma 5, theorem 3 and theorem 2 of [2, the definition that
a curvature form to be G-valued does not depend on the definitions
of curvature form.

6. Connection of microbundles and topological manifolds. By
Kister’s theorem ([4), a topological microbundle ([5) over a locally
finite complex is induced from a unique H0(n)-bundle over X. Here
Ho(n) is the group of all homeomorphisms of R" which fix the origin
with compact open topology. Therefore we consider H0(n)-bundles over
X instead of microbundles over X. Then according to the definitions
of this note, we can consider the connections of microbundles.

Definition. If X is a topological manifold, then a connection of
the tangent microbundle of X ([5) is called a connection of X.

Although we don’t know the existence of connections for micro-
bundles, a GL(n, R)-bundle always has a connection form if X is a
paracompact normal topological space. ([2, n2). Therefore we
obtain by lemma 5 and theorem 3, (or theorem 2 of [2),

Theorem 6. An Ho(n)-bundle over a simply connected
paracompact normal topological space is induced from a vector
bundle if and only if has a connection form with matrix valued
curvature form.

Corollary. A simply connected PL-manifold X can be given
a smoothness structure if and only if X has a connection form
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with matrix valued curvature form.
This follows from theorem 6 and [_5, theorem (5, 12).
Note. By lemma 7, the correspondence -v() is a bijection.

But if we use C’(R), the Banach space consisted by the all bounded
continuous functions on R with norm Ilfll=maxa n If(x)I, instead
of C(R) and use the strong topology of R(C’(R)), the ring of
all linear operators of C’(R), then t: Ho(n)-R(C’(R’)) is not continuous.
In fact, we obtain

t(a)--t(b) II >- 1,
for all a, b e Ho(n).
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