No. 1] 13

4. Connection of Topological Fibre Bundles

By Akira ASADA
(Comm. by Kinjir6 KUNUGI, M.J.A., Jan. 12, 1966)

In Asada [2], we give a general theory of connections of
topological vector bundles. There a connection form {4} of the given
bundle & has following property: The value of 1+6, belongs in G,
the structure group of &, Therefore starting from {s;}={1+0,}, we
can construct a theory of connections of arbitrary topological fibre
bundles without using the ring A of Asada [2]. To state this theory
is the purpose of this note. But we don’t know whether there exists
or not a connection form for an arbitrary fibre bundle &.

1. Connection of fibre bundles. We denote by X a topological
space, £ a topological fibre bundle over X with structure group G.
The transition functions of & are denoted by gyv.

As in Asada [2], »°1, we denote the group of continuous maps
from V(4,(U)) to G with equivalence relation f,~f, if and only if
fil W=f,|W for some neighborhood W(4,(U)) of 4,(U)in Ux---x U
by C(U, G) and set
C(U, )={f|fe C(U, ), f(++-, ®;, @i, ++-)=1 for all 5, 0<i<s—1}.
Then we define the sheaves G"=G"(&) and G '=G"(&) by

Gr: the sheaf of germs of those maps {fo}, foe C1(U, @,

gUV(xO)—lfU(wO’ Y xﬁ)gUV(mr):fV(xm ct x'r)'

G": the subsheaf of &" consisted those elements {f,} that
freC"(U,G) for all U,

Definition. If {s;}e HY(X, G*), then we call {s;} is a connection
form of &,

Note. As usual, if {s;} is a connection form of {g,,}, {U’} is a
refinement of {U} and gy =gsr| U'NV’, then {sy}, sp.=s,| U,
becomes a connection form of {g,}. We identify {s,;} and this {s;}.
On the other hand, if {s;} is a connection form of {g,,} then
{ho(@5)sp (o, 2, )hy(2,)~"} is a connection form of {hygy+h;'}. We identify
{sv} and this {hysyhz'}. For the simplicity, we identify {s,} and the
equivalence class of {sy}.

Lemma 1. HYX, G is non-empty if and only if HY(X, G
18 nom-empty.

Lemma 2. {1} belongs in H(X, G*) ©f and only if {1} belongs
in HY(X, @Y.

Theorem 1. ¢ is equivalent to a bundle with tatally disconnect
structure group if and only if {1} becomes a connection form of E.

Proof, If {hygsrh7'} is locally constant, then {sy(z,, 2.)}=
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{ho(x)hy(x)"} belongs in H°(X, G'). On the other hand, if {1}
belongs in H'(X, G*), then {gy,} is locally constant. Hence we get
the theorem.,

Corollary. The connected component of the structure group
of & is reduced to H, a subgroup of G, tf there exists a connection
form {sy} of & such that the class of the value of {sy} tn H\G/H is
equal to 1.

2. Elements of C(X4 G) derived from connection forms. We
denote by X, the associated principal bundle of &. The projection
from X, to X is denoted by #=7, The homeomorphism from z7=*(U)
to UxG is denoted by ¢y-¢'(x, @) is denoted by ¢z'(x)(a@). Then
setting

a0=€051(90)(a0), CX:QDEI({B)(G,) € XG’ cE Gv
G operates on X,.

Theorem 2. We set

(1) C(Xe G)e=1{s|s € C(Xy, G), s(aa, Bb)=a""s(c, )b,
«, Be Xq4 a,be G},
Then there is a bijection t=ty between H(X, GY) and CY{X,, G)q.

Proof. If {s;} belongs in H%X, G'), then we set

t{se(eo(2) (@), ¢o(y) (b)) =a""sy(x, y)b.
By the definition of &*, this definition of ¢ does not depend on the
choice of U and t({sy}) belongs in CY(Xg, G)gs. On the other hand, if
s belongs in CY( Xy, G)4, then setting
t7(8)u(@, y)=as(¢pz (x)(a@), o' (»)ONb,

t=Y(8)y(x, y) does not depend on the choice of a, b and {t~'(s),} belongs
in HY(X, G'). Moreover, we have tt7'(s)=s, t7'¢t({sy})={sz}. Hence
we obtain the theorem.

Corollary. Setting

TY X4 G)={r|re C(Xy G), r(aa, Bb)=a"'r(a, Ba},
we get
(2) C(Xq, G)a=T(Xq, ()3, s € C(Xqg, G)g,
1f C(Xq, G)e #+ @.

Note, Similarly, we can prove that there is a bijection ¢z between
H(Xyxg, GY) and CY(Xg, G)y for arbitrary subgroup H of G. Here
Xg gz is the associated G/H-bundle of &, H(Xgy, G') is the set of
connections of 7, ;*(§) and CY(Xy, G)y is given by

Cl(XGy G)H:{s | s€ Cl(XG" G)) S(ad, le}zd—ls(a’ ,B)b,
a,Be X4 a,be HY.

By theorem 1 and above note, we obtain (ef. [3]),

Theorem 4'. X, 8 induced from a covering space of Xgpg tf
and only if {1} belongs in t;'(C(Xq, G)g). Here t, means the bijection
from HY (X, GY) to CY(X,, G).
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3. Curvature form of a connection form. Lemma 3. X, has
a cross-section from X if and only if there exists a continuous
function s; X,—G such that

(3) s(aa)=s(a)a, x € Xq4 acG.
Lemma 4. If s, 8,: Xo—G satisfy (2), then setting
(4) s(a, B)=s,(a)'s(B),

s(a, B) becomes a comnection form of X.

Since G is a non-abelian group in general, although C"(X, G)
and 9,: C"(Xq, G)—C (X, G) are defined for all r,d,,.,0,+1 if r>1
in general. But d,0, is equal to 1 for all G. Strictly, 0,f is given by

(0.1 )@, @1, T2)=F (@1, o) (@0, To)7f (20, @),
We denote ker. 9, by Z"(X,, G).

Definition. If s belongs in CY{X, G); then we call d,s the
curvature form of s.

By definition, if s is a connection form, then we get
(5) (9,8)(aa, Bb, ve)=b""(d,8)(ax, B, 7)b.

Note. We define the sheaf G®=G*(¢) as follows.

G®: the sheaf of germs of those maps {f;}, fr € C*(U, G) and

o (®) 7 fo (%o, X1y 85)90 (1) = fr (o, X1, ).
Then we can define the map ¢ from H(X, &') to HY(X, §®) and we

call 0({sy}) is the curvature form of {s;}. Moreover, the following
diagram is commutative

C{( Xy, G) THX,, G)
¢ ¢
HY(X, @)L HY(X, G©),
where T* X, G) and ¢’ are given by
T Xq, G)={r|r e C(Xq, G), r(aa, Bb, ve)=b""r(c, B, 7)b},
t'{ ful)eo(@)(@), eu(y)(b), ¢u(2)(€))=b""fu(x, ¥, 2)b.
Lemma 5. If 7 is an H-bundle and H is a subgroup of G,

then to denote © the inclusion from H to G, we have the following
commutative diagram.

HY(X, @) ——HY(X, G®(i*(1))

¥ ¥

HY(X, G(n) —— HYX, 9()).

Theorem 3. (cf. [2], theorem 2, [T], [8]). If the value of a
curvature form of & belongs in H, a subgroup of G, then the con-
nected component of the structure group of & is reduced to H,

Corollary. If & has a connection form which is a cocycle, then
X4 18 induced from a representation of m(X) in G.

Similarly, if we use the notion of curvature forms, theorem 4’
is refined as follows.
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Theorem 4. X, is tnduced from a covering space of Xg g,
where H is a subgroup of G, vf and only if 1 belongs in 6,(CH Xy, G)a),
or equivalently
(6) CH(Xq, G NZH (X, )~ 2.

4, Associated vector bundle of a topological fibre bundle. To
show the relations between above theory of connections and the theory
given in [2], first we construct an associated vector bundle of &.

We denote by F' the fibre of ¢ and assume that F' has sufficiently
many continuous functions, We denote by C(F') the topological vector
space over R consisted by all real valued continuous functions on F
with compact open topology. The ring of all linear operators of C(F")
is denoted by R(C(F)).

For T e R(C(F)), fi, -, fnc C(F), a compact set K of F, we set
U(T’ fly ] fm K’ 8)-:{S‘ I (wa)(x)_(sfz)(x) l<8y xe K9 1S%S’I’l/}.
Then taking {U(T, fi, --+, f., K, &)} to be open basis of R(C(F)),

R(C(F)) becomes a topological ring. ([6], § 33).

Lemma 6. For acG, fe C(F), we set
(7) (d@)f )xw)=f(a"*(x)).

Then ¢(a) belongs in R(C(F')) and the map ¢ G—R(C(F)) is a
continuous monomorphism.

Note. ¢ is not a homeomorphism in general. But we obtain

Lemma 7. We assume that F is a C'-class manifold and G
18 a group of Cr-diffeomorphisms of F with C”-topology. (r'<r).
(e¢f. [1]). Here C-manifold, C°-diffeomorphism, and C’-topology mean
topological manifold, homeomorphism and compact open topology.
The topological vector space consisted by all C™'-class functions on
F with C"-topology is denoted by C”'(F') and the ring of all linear
operators of C"(F) is denoted by R(C"(F)). Then if we take

U(Thfl’ "'fn’ K’ 8)
={S|| D(Tf)=)—D"(Sf)@)|<e, ze K, | p|<r', 1<i<n},
2]
P=(hs oG [Pl o i, D= g e, D=,
to be open basis of R(C”(F)), the map ¢: G—R(C"(F)) defined by (7)
s a homeomorphism.

In the rest, we denote the associated C(F')-bundle (C™'(F')-bundle)
of & by v(&) (v"”'(8)), then by lemma 7, if & is an Hy(n)-bundle (H; "' (n)-
bundle (ef. [17)) then the correspondence £—v(&) (6—v™(§)) is a bijection.

5. Relations between the connections of this note and that of
[2]. Since v(¢) is a vector bundle, we can define its s-cross-sections.
([2], n°2). We can also define the addition of the elements of G
and we get

Theorem 5. If {s;} 18 a connection form of &, then setting
{05}={sx—1}, we have
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(8) (d+00) fr=4gur)d+0y)fp,

for all freC(X, v(&),s=>0. Conversly, tf the collection {6},
0y € C(U, R(C(F))) satisfies (8) and the value of 140, belongs in
(G)=G, then setting sy=1+0y, {sy} belongs in H'(X, G*) ©f ¢ is a
homeomorphism.

Note, By the proof of theorem 1 of [2], we know that if X is
a paracompact normal topological space, then there always exists a
collection {0}, 6, € C{(U, R(C(F'))) which satisfies (8).

Since we obtain
(9) A0y 0507 =85(%,, ,)85(X1, T2) — Sp(0, ,),
if {0y}={sy—1}, the definition of the curvature form of a connection
form must different from the definition of this note if we use the
definition of curvature forms of [2]. But theorem 3 of this note
and theorem 2 of [2] show that there must be relations between
curvature forms defined by the right hand side of (9) and defined as
0.(t({sy})). For example, we obtain
(10) 0,(t({su )2y, 1, 2,)=1 if and only if

8p(@o, ®1)85(®1, X5) — 8p(%,, X,)=0.

Definition. {0y}={d0y+0,0,} is called a G-valued curvature
form if the value of 1+6; belongs in G.

By lemma 5, theorem 3 and theorem 2 of [2], the definition that
a curvature form to be G-valued does not depend on the definitions
of curvature form.,

6. Connection of microbundles and topological manifolds. By
Kister’s theorem ([4]), a topological microbundle X([5]) over a locally
finite complex is induced from a unique H,(n)-bundle over X. Here
Hyn) is the group of all homeomorphisms of R* which fix the origin
with compact open topology. Therefore we consider H,(n)-bundles over
X instead of microbundles over X. Then according to the definitions
of this note, we can consider the connections of microbundles.

Definition, If X is a topological manifold, then a connection of
the tangent microbundle of X ([5]) is called a connection of X.

Although we don’t know the existence of connections for micro-
bundles, a GL(n, R)-bundle always has a connection form if X is a
paracompact normal topological space. ([2], %°2). Therefore we
obtain by lemma 5 and theorem 3, (or theorem 2 of [27),

Theorem 6. An Hyn)-bundle X over a simply connected
paracompact mormal topological space is imduced from a vector
bundle if and only if ¥ has a connection form with matric valued
curvature form.

Corollary., A simply connected PL-manifold X can be given
a smoothness structure vf and only 1f X has a conmnection form
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with matrix valued curvature form.

This follows from theorem 6 and [5], theorem (5, 12).

Note., By lemma 7, the correspondence X¥—w(¥X) is a bijection.
But if we use C'(R"), the Banach space consisted by the all bounded
continuous functions on R* with norm || f]|=max,c; 7 | f(x)|, instead
of C(R*) and use the strong topology of R(C'(R")), the ring of
all linear operators of C’(R™), then ¢: H(n)—R(C'(R™)) is not continuous.
In fact, we obtain

|| da)—e®) =1,
for all a, be Hyn).
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