24. Axiom Systems of B-algebra. IV

By Yoshinari Arai

(Comm. by Kinjirô Kunugi, m.J.A., Feb. 12, 1966)
In our previous notes (see [1], [2], [3], [4], and [5]), we considered how to formulate axiom systems of propositional calculi into algebraic forms. Among these algebras, we are concerned with the B-algebra which is equivalent to the notion of Boolean algebra. The purpose of our paper is to give some axiom systems of the B algebra following our new point of view.

In his note (see [4]), K. Iséki defined the B-algebra. Let $M=$ $\langle X, 0, *, \sim\rangle$ be a B-algebra, i.e., M is an abstract algebra which satisfies the following axioms:

$$
\begin{array}{lll}
B & 1 & x * y \leqslant x, \\
B & 2 & (x * z) *(y * z) \leqslant(x * y) * z, \\
B & 3 & x * y \leqslant(\sim y) *(\sim x), \\
B & 4 & 0 \leqslant x,
\end{array}
$$

where $x \leqslant y$ means $x * y=0$, and if $x \leqslant y, y \leqslant x$, then we write $x=y$. As already shown in [1] and [3], the above axiom system is equivalent to the following axioms:

F1 $\quad x * y \leqslant x$,
F $2(x * y) *(z * y) \leqslant(x * z) * y$,
F $3(\sim x) *(\sim y) \leqslant y * x$,
F4 $x \leqslant \sim(\sim x)$,
F $5 \sim(\sim x) \leqslant x$,
D $10 \leqslant x$,
$D 2$ If $x \leqslant y$ and $y \leqslant x$, then we put $x=y$,
D $3 x \leqslant y$ means $x * y=0$.
The conditions $F 1 \sim F 5$ are an algebraic formulation of Frege axioms of classical propositional calculus (see [6]). Therefore a B-algebra is characterized by $F 1 \sim F 5$ and $D 1, D 2, D 3$.

In this note, we shall show the following
Theorem. A B-algebra $M=\langle X, 0, *, \sim\rangle$ is characterized by
$L 1(x * y) *(x * z) \leqslant z * y$,
$L 2 x \leqslant x *(\sim x)$,
$L 3 x *(\sim y) \leqslant y$,
and $D 1, D 2, D 3$.
The conditions $L 1 \sim L 3$ are an algebraic formulation of the two valued classical propositional calculus given by J. Lukasiewicz (see [6]).

First a proof of $\mathrm{F} \Rightarrow \mathrm{L}$ will be given by using the technique in
the note of Y. Arai and K. Iséki (see [1]). After giving a proof of $\mathrm{F} \Rightarrow \mathrm{L}$, we shall prove $\mathrm{L} \Rightarrow \mathrm{F}$. We shall give a proof of $\mathrm{F} \Rightarrow \mathrm{L}$. By $F 2, F 4, F 5, D 1, D 2$, and $D 3$, we have the following lemmas:

Lemma 1. $x=\sim(\sim x)$,
Lemma 2. $x * z \leqslant y$ implies $x * y \leqslant z * y$.
Put $x=((x * y) *(z * y)) *((x * z) * y)$ and $y=x * z$ in $F 1$, then we have
$(((x * y) *(z * y)) *((x * z) * y)) *(x * z) \leqslant((x * y) *(z * y)) *((x * z) * y)$.
The right side is equal to 0 by $F 2$ and $D 3$. Hence, by $D 1$ and $D 3$, we have
(1) $((x * y) *(z * y)) *((x * z) * y) \leqslant x * z$.

By (1) and Lemma 2, we have

$$
((x * y) *(z * y)) *(x * z) \leqslant((x * z) * y) *(x * z)
$$

For the right side is equal to 0 by substituting $x * z$ for x in $F 1$ and $D 3$, from $D 1$ and $D 3$, we have
(2) $(x * y) *(z * y) \leqslant x * z$.
(2) implies

Lemma 3. $x \leqslant z$ implies $x * y \leqslant z * y$.
Lemma 4. $x \leqslant z$ and $z \leqslant y$ imply $x \leqslant y$.
Put $x=\sim x, y=\sim y$ in $F 3$ and use Lemma 1, then we have
(3) $x * y \leqslant(\sim y) *(\sim x)$.

By substituting $\sim y$ for x and $\sim x$ for y in $F 1$, we have $(\sim y) *(\sim x) \leqslant \sim y$. Applying Lemma 4, we have
(4) $x * y \leqslant \sim y$.

Put $y=\sim y$ in (4), then we have $x *(\sim y) \leqslant \sim(\sim y)$. Applying Lemma 1 to the right side, we have
(5) $x *(\sim y) \leqslant y$.

Put $x=(x * y) * x$ and $y=(z * y) *(x * y)$ in $F 1$, then we have $((x * y) * x) *((z * y) *(x * y)) \leqslant(x * y) * x$.
Since the right side is equal to 0 by $F 1$ and $D 3$, form $D 1$ and $D 3$, we have
(6) $(x * y) * x \leqslant(z * y) *(x * y)$.

Put $x=x * y, y=z$, and $z=z * y$ in (2) and use Lemma 2, then we have

$$
((x * y) * z) *((x * y) *(z * y)) \leqslant((z * y) * z) *((x * y) *(z * y)) .
$$

The right side is equal to 0 by putting $x=z$ and $z=x$ in (6) and $D 3$. Therefore, by $D 1$ and $D 3$, we have
(7) $(x * y) * z \leqslant(x * y) *(z * y)$.

Applying Lemma 3 to (7), we have

$$
((x * y) * z) *((x * z) * y) \leqslant((x * y) *(z * y)) *((x * z) * y)
$$

The right side is equal to 0 by $F 2$ and $D 3$. Then, by $D 1$ and $D 3$, we have
(8) $(x * y) * z \leqslant(x * z) * y$.
Then we have Lemma 5 which is called the commutative law:
Lemma 5. $x * z \leqslant y$ implies $x * y \leqslant z$.
By (2) and the commutative law, we have
(9) $(x * y) *(x * z) \leqslant z * y$.

Applying Lemma 3 to (9), we have

$$
((x * y) *(x * z)) *((\sim y) *(\sim z)) \leqslant(z * y) *((\sim y) *(\sim z))
$$

The right side is equal to 0 by substituting z for x in (3) and $D 3$. Hence, by $D 1$ and $D 3$, we have
(10) $(x * y) *(x * z) \leqslant(\sim y) *(\sim z)$.

Applying Lemma 2 to (4), we have
(11) $x *(\sim y) \leqslant y *(\sim y)$.

Applying Lemma 3 to (10), we have

$$
((x * y) *(x * z)) *(z *(\sim z)) \leqslant((\sim y) *(\sim z)) *(z *(\sim z)) .
$$

The right side is equal to 0 by substituting $\sim y$ for x and z for y in (11) and $D 3$. Therefore, by $D 1$ and $D 3$, we have
(12) $(x * y) *(x * z) \leqslant z *(\sim z)$.

Applying Lemma 5 to $F 1$, we have
(13) $x * x \leqslant y$, i.e. $x \leqslant x$.

By putting $y=x *(\sim x)$ and $z=x$ in (12) and applying Lemma 5, we have $(x *(x *(\sim x))) *(x *(\sim x)) \leqslant x * x$. The right side is equal to 0 by (13) and $D 3$. Then, by $D 1$ and $D 3$, we have
(14) $x *(x *(\sim x)) \leqslant x *(\sim x)$.

Put $x=x * x$ and $y=(y * x) * x$ in $F 1$, then we have

$$
(x * x) *((y * x) * x) \leqslant x * x
$$

The right side is equal to 0 by (13) and $D 3$. Then, by $D 1$ and $D 3$, we have
(15) $x * x \leqslant(y * x) * x$.

Applying Lemma 2 to $F 2$, we have
(16) $\quad(x * y) *((x * z) * y) \leqslant(z * y) *((x * z) * y)$.

Put $x=y, y=x$, and $z=x$ in (16), then we have

$$
(y * x) *((y * x) * x) \leqslant(x * x) *((y * x) * x)
$$

The right side is equal to 0 by (15) and $D 3$. Then, by $D 1$ and $D 3$, we have
(17) $y * x \leqslant(y * x) * x$.

Put $x=x *(\sim x)$ and $y=x$ in (17), then we have

$$
x *(x *(\sim x)) \leqslant(x *(x *(\sim x))) *(x *(\sim x))
$$

The right side is equal to 0 by (14) and $D 3$. Therefore, by $D 1$ and $D 3$, we have
(18) $x \leqslant x *(\sim x)$.

We have proved that $F 1 \sim F 5$ imply $L 1 \sim L 3$, i.e. (5), (9), and (18). Next we shall prove that $F 1 \sim F 5$ is derived from $L 1 \sim L 3$. By $L 1, D 1$, and $D 3$, we have

Lemma 1'. $z \leqslant y$ implies $x * y \leqslant x * z$,
Lemma 2'. $x \leqslant z, z \leqslant y$ imply $x \leqslant y$.
From $L 2, L 3$, and $D 2$, we have
Lemma 3'. $x *(\sim x)=x$.
In $L 1$, put $y=x$ and $z=x *(\sim x)$, then we have

$$
(x * x) *(x *(x *(\sim x))) \leqslant(x *(\sim x)) * x
$$

By substituting x for y in $L 3$, the right side is equal to 0 , and by $L 2$ and $D 3$, the second term of the left side is equal to 0 . Hence, from $D 1$ and $D 3$, we have

Lemma 4' $\quad x * x=0$, i.e. $x \leqslant x$.
Applying Lemma 1^{\prime} to $L 3$, we have
(1') $\quad x * y \leqslant x *(x *(\sim y))$.
If we put $y=\sim x$ and $z=\sim y$ in $L 1$, we have

$$
(x *(\sim x)) *(x *(\sim y)) \leqslant(\sim y) *(\sim x)
$$

Next we substitute $\sim y$ for x and x for y in $L 3$, then we have $(\sim y) *(\sim x) \leqslant x$. Hence, applying Lemma 2^{\prime}, we have

$$
(x *(\sim x)) *(x *(\sim y)) \leqslant x .
$$

Therefore, from Lemma 3^{\prime}, we get
(2') $x *(x *(\sim y)) \leqslant x$.
(2') and Lemma 1^{\prime} imply $(x * y) * x \leqslant(x * y) *(x *(x *(\sim y))) . \quad$ By ($\left.1^{\prime}\right)$ and $D 3$, the right side is equal to 0 . Hence, by $D 1$ and $D 3$, we have
($\left.3^{\prime}\right) \quad x * y \leqslant x$.
Put $x=y, y=z$ in (3^{\prime}) and use Lemma 1^{\prime}, then we have
(4') $x * y \leqslant x *(y * z)$.
By (4'), D 1 and $D 3$, we have
Lemma 5'. $x \leqslant y * z$ implies $x \leqslant y$.
If we substitute $\sim x$ for y and y for z in $L 1$, we have

$$
(x *(\sim x)) *(x * y) \leqslant y *(\sim x)
$$

Using Lemma 3^{\prime}, then we have
(5) $\quad x *(x * y) \leqslant y *(\sim x)$.
(5') and Lemma 5^{\prime} imply
(6') $x *(x * y) \leqslant y$.
We shall now prove the commutative law, i.e. $x * z \leqslant y$ implies $x * y \leqslant z$. Let $(x * z) * y=0$, i.e. $x * z \leqslant y$, then we have $x * y \leqslant x *(x * z)$ from Lemma 1^{\prime}. Applying Lemma 2^{\prime}, we have $x * y \leqslant z$. Hence we have

Lemma 6'. $\quad x * z \leqslant y$ implies $x * y \leqslant z$.
By $L 1$ and Lemma 6^{\prime}, we have
($\left.7^{\prime}\right) \quad(x * y) *(z * y) \leqslant x * z$.
By $L 3$ and Lemma 6^{\prime}, we have
($\left.8^{\prime}\right) \quad x * y \leqslant \sim y$.
By (8^{\prime}) and Lemma 1^{\prime}, we have $x *(\sim y) \leqslant x *(x * y)$. Next, by
the above formula, (5^{\prime}) and Lemma 2^{\prime}, we have
($\left.9^{\prime}\right) \quad x *(\sim y) \leqslant y *(\sim x)$.
Let $x=y$ and $y=x$ in $\left(9^{\prime}\right)$, then $y *(\sim x) \leqslant x *(\sim y)$. Therefore, by considering $D 2$, we have

Lemma 7'. $y *(\sim x)=x *(\sim y)$.
By (5^{\prime}) and Lemma 7', we have
(10') $\quad x *(x * y) \leqslant x *(\sim y)$.
Put $x=\sim x$ and $y=x$ in (10'), then we have

$$
(\sim x) *((\sim x) * x) \leqslant(\sim x) *(\sim x)
$$

For the right side is equal to 0 by Lemma 4^{\prime}, by $D 1$ and $D 3$, we have
(11') $\sim x \leqslant \sim x * x$.
Put $x=\sim(\sim x), y=x$ in $L 3$ and use Lemma 1^{\prime}, then we have $\sim(\sim x) * x \leqslant \sim(\sim x) *(\sim(\sim x) *(\sim x))$.
The right side is equal to 0 by substituting $\sim x$ for x in (11^{\prime}) and $D 3$. Hence, by $D 1$ and $D 3$, we have
(12') $\sim(\sim x) \leqslant x$.
Put $y=\sim x$ in $\left(8^{\prime}\right)$ and use Lemma 1^{\prime}, we have $x *(\sim(\sim x)) \leqslant$ $x *(x *(\sim x))$. The right side is equal to 0 by $L 2$ and $D 3$. Hence, by $D 1$ and $D 3$, we have
(13') $x \leqslant \sim(\sim x)$.
(12'), (13'), and D 2 show
Lemma $8^{\prime} . \quad x=\sim(\sim x)$.
Put $x=\sim x$ in $\left(9^{\prime}\right)$, then we have $(\sim x) *(\sim y) \leqslant y *(\sim(\sim x))$. The second term of the right side is equal to x by Lemma 8^{\prime}. Hence we have
(14') $\quad(\sim x) *(\sim y) \leqslant y * x$.
Put $x=x * y, y=u, z=z * y$ in (7^{\prime}), use (7^{\prime}) and apply Lemma 2^{\prime}, then we have $((x * y) * u) *((z * y) * u) \leqslant x * z$. Hence, applying the commutative law, i.e. Lemma 6^{\prime}, we have
(15') $((x * y) * u) *(x * z) \leqslant(z * y) * u$.
(15') means
Lemma 9'. $z * y \leqslant u$ implies $(x * y) * u \leqslant x * z$.
Put $x=x * y$ in (10^{\prime}), then we have

$$
(x * y) *((x * y) * y) \leqslant(x * y) *(\sim y)
$$

The right side is equal to 0 by $\left(8^{\prime}\right)$ and $D 3$. Then, by $D 1$ and $D 3$, we have
(16') $\quad x * y \leqslant(x * y) * y$.
Put $x=x * y, z=x * z$ in (7^{\prime}), use $L 1$ and apply Lemma 2^{\prime}, then we have

$$
((x * y) * y) *((x * z) * y) \leqslant z * y
$$

Using the commutative law, i.e. Lemma 6 ', we have
(17') $\quad((x * y) * y) *(z * y) \leqslant(x * z) * y$.

By (17') and Lemma 9^{\prime}, we have

$$
((x * y) *(z * y)) *((x * z) * y) \leqslant(x * y) *((x * y) * y)
$$

The right side is equal to 0 by (16^{\prime}) and $D 3$. Therefore, by $D 1$ and $D 3$, we have
(18') $\quad(x * y) *(z * y) \leqslant(x * z) * y$.
We have proved that $L 1 \sim L 3$ imply $F 1 \sim F 5$, i.e. (3^{\prime}), (12^{\prime}), $\left(13^{\prime}\right),\left(14^{\prime}\right)$, and $\left(18^{\prime}\right)$. Now we have completed the proof of $\mathrm{F} \Longleftrightarrow \mathrm{L}$.

References

[1] Y. Arai and K. Iséki: Axiom systems of B-algebra. II. Proc. Japan Acad., 41, 908-910 (1965).
[2] Y. Imai and K. Iséki: Axioms of B-algebra (to appear in Portugaliae Math.).
[3] K. Iséki: Algebraic formulations of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).
[4] -: Axiom systems of B-algebra. Proc. Japan Acad., 41, 808-811 (1965).
[5] -: Some Theorems in B-algebra. Proc. Japan Acad., 42, 30-32 (1966).
[6] J. Lukasiewicz: Elements of Mathematical Logic (translation from Polish). Oxford (1963).

