75. On Topological-Additive-Group-Valued Measures

By Masahiro TAKAHASHI

Department of Mathematics, Nara Medical College (Comm. by Kinjirô KUNUGI, M.J.A., April 12, 1966)

1. Introduction and Summary. A measure has been conceived as a real-valued, usually non-negative set function, whose notable example is the Lebesgue measure. The purpose of this paper is to generalize the notion of a measure to a set function taking values in a topological additive group and to state how such a measure can be extended and completed along the line of the Lebesgue measure theory.

The existence of the Lebesgue measure is, as is well known, verified by at first considering a measure defined for rather simple sets (e.g. half open intervals in one-dimensional case) and next extending it to a measure defined for more complicated sets (i.e. Borel sets or so-called Lebesgue measurable sets), where the outer measure plays an essential role. The construction of the Lebesgue measure is accomplished by completion of the Borel measure.

In this paper, given a ring \mathcal{R} , a topological additive group Gand a G-valued measure μ on \mathcal{R} , we shall define an outer measure, in a generalized sense, μ^* on the *hereditary* (i.e. the conditions $X \in \mathcal{H}$ and $Y \subset X$ imply $Y \in \mathcal{H}$) ring \mathcal{H} generated by \mathcal{R} . By using μ^* , the measure μ will be extended to a measure ν on, roughly speaking, a σ -ring S generated by \mathcal{R} . Finally it will be shown that the measure ν on S can be extended to a measure $\overline{\nu}$ on a σ -ring \overline{S} , which is the completion of ν .

One of the main differences of our theory from the ordinary Lebesgue measure theory is that the 'non-negativity' of real numbers is not available. Difficulties arising from this fact are avoided by replacing the condition with the 'bounded variation' property. Anothor difference is the fact that the group G in which the measure takes values does not admit the element ' ∞ '. We are now dealing with G-valued measures in the strict sense of the term. For this reason, a measure μ on a ring \mathcal{R} can not in general be extended to a measure on, in the strict sense, the σ -ring \mathcal{S} generated by \mathcal{R} . So our consideration will be restricted, in place of \mathcal{S} , to the class of sets in \mathcal{S} each of which is contained in some set in \mathcal{R} .

We shall state the main results with outlines of their proofs throughout the following sections.

2. Extension of a measure. A non-empty class of subsets of a fixed set is called a *ring* if it contains $X \cup Y$ and X - Y provided it contains X and Y. A ring \mathcal{R} will be called a *pseudo-\sigma-ring* if it contains $\bigcap_{i=1}^{\infty} X_i$, for $X_i \in \mathcal{R}$, $i=1, 2, \cdots$.¹⁾ We shall define a *measure* as a map μ of a ring \mathcal{R} into a topological additive group G satisfying the following conditions:

1) $\mu(X \cup Y) = \mu(X) + \mu(Y)$ for X, Y in \mathcal{R} such that $X \cap Y = \phi$, 2) $\mu(X_i) \rightarrow 0$ as $i \rightarrow \infty$ for $X_i \in \mathcal{R}, i=1, 2, \cdots$, such that $X_i \downarrow \phi$ as $i \rightarrow \infty$.²⁾

If μ is a G-valued measure on a ring \mathcal{R} , and if, for any set X in \mathcal{R} and for any neighbourhood U of the unit element of G, there exists a positive integer n such that if $X \supset X_i \in \mathcal{R}$, $i=1, 2, \dots, n$, and if $X_i \cap X_k = \phi$ $(j \neq k)$, then there exists an integer i_0 between 1 and n such that $\mu(X_{i_0}) \in U$, then we shall say the measure μ is of bounded variation.³⁾

Let M be a fixed set and \mathcal{R} be a ring of subsets of M. Then it is easily verified that there exists the smallest pseudo- σ -ring of subsets of M containing \mathcal{R} , i.e. the pseudo- σ -ring generated by \mathcal{R} , which will be denoted by \mathcal{S} .

Let us assume G is a Hausdorff, complete topological additive group and μ is a G-valued measure on the above defined ring \mathcal{R} .

One of the main purposes of this paper is to establish the following result.

Theorem 1. If the measure μ is of bounded variation, then μ is uniquely extended to a G-valued measure ν on S and the extended measure ν is again of bounded variation.

We shall sketch the outline of the proof of this theorem.

Considering, in the beginning, the class $\widetilde{\mathscr{R}}$ of all sets of the form $\bigcup_{i=1}^{\infty} X_i$ which is contained in X_0 , where $X_i, i=0, 1, 2, \cdots$, are sets in \mathscr{R} , we obtain the following lemma.

1) This condition is equivalent to the one: \mathscr{R} contains $\bigcup_{i=1}^{\infty} X_i$ if $X_i, i=1, 2, \cdots$, are sets in \mathscr{R} and if $\bigcup_{i=1}^{\infty} X_i \subset X$ for some set X in \mathscr{R} .

2) This condition is, under the condition 1), equivalent to each of the following two conditions:

2') $\mu(X_i) \rightarrow \mu(X)$ as $i \rightarrow \infty$ for X, X_i in $\mathcal{R}, i=1, 2, \cdots$, such that $X_i \uparrow X$ as $i \rightarrow \infty$,

 $2'') \quad \mu\left(\bigcup_{i=1}^{\infty} X_i\right) = \sum_{i=1}^{\infty} \mu(X_i) \text{ for } X_i \in \mathcal{R}, i=1, 2, \cdots, \text{ such that } X_j \cap X_k = \phi(j \neq k)$ and $\bigcap_{i=1}^{\infty} X_i \in \mathcal{R}$,

where $X_i \downarrow \phi$ as $i \to \infty$ ' and $X_i \uparrow X$ as $i \to \infty$ ' imply that $X_1 \supset X_2 \supset \cdots$ and $\bigcap_{i=1}^{\infty} X_i = \phi$ ' and that $X_1 \supset X_2 \supset \cdots$ and $\bigcup_{i=1}^{\infty} X_i = X$ ' respectively.

3) A non-negative real-valued measure is always of bounded variation.

No. 4]

M. TAKAHASHI

[Vol. 42,

Lemma 1. There exists a unique map $\tilde{\mu}$ of $\tilde{\mathbb{R}}$ into G such that $\mu\left(\bigcup_{i=1}^{n} X_{i}\right) \rightarrow \tilde{\mu}\left(\bigcup_{i=1}^{\infty} X_{i}\right)$ as $n \rightarrow \infty$, if $X_{i}, i=1, 2, \cdots$, are sets in \mathcal{R} and if $\bigcup_{i=1}^{\infty} X_{i} \in \tilde{\mathcal{R}}$.

Proof. Under the assumption that the measure μ is of bounded variation,⁴⁾ it can be shown that $\mu\left(\bigcup_{i=1}^{n} X_{i}\right)$, $n=1, 2, \cdots$, forms a Cauchy sequence in G. Hence, if $X=\bigcup_{i=1}^{\infty} X_{i}\in \widetilde{\mathcal{R}}, X_{i}\in \mathcal{R}, i=1, 2, \cdots$, we can, G being complete, define $\widetilde{\mu}(X)$ as the limiting point of the sequence $\mu\left(\bigcup_{i=1}^{n} X_{i}\right), n=1, 2, \cdots$, which is shown to be independent of the choice of X_{i} 's such that $\bigcup_{i=1}^{\infty} X_{i}=X$. The uniqueness of the map $\widetilde{\mu}$ is obvious.

Let us consider the map $\tilde{\mu}$ in Lemma 1 and let \mathcal{H} be the class $\{X \mid X \subset Y \text{ for some set } Y \text{ in } \mathcal{R}\}$ of subsets of M (i.e. the hereditary ring generated by \mathcal{R}). Then we can prove the following lemma.

Lemma 2. For any fixed set X in \mathcal{H} , $\Gamma(X) = \{Y \mid Y \in \widehat{\mathcal{R}}, Y \supset X\}$ is a directed set, when we write $Y \leq Z$ if and only if $Y \supset Z$, for Y, Z in $\Gamma(X)$. Moreover, $\widetilde{\mu}(Y), Y \in \Gamma(X)$, becomes a Cauchy sequence in G.

Assigning the limiting point of the sequence $\tilde{\mu}(Y)$, $Y \in \Gamma(X)$, to each X in \mathcal{H} , we have the following lemma.

Lemma 3. There exists a unique map μ^* of \mathcal{H} into G having the following property: if $X \in \mathcal{H}$, $Y \in \tilde{\mathbb{R}}$ and $X \subset Y$, then, for any neighbourhood U of the unit element of G, we can find a set Z in $\tilde{\mathbb{R}}$ such that $X \subset Z \subset Y$ and $\mu(Z) - \mu^*(X) \in U$.

Thus we can define a map μ^* of the hereditary ring \mathcal{H} generated by \mathcal{R} into G, which is anologous to (but not the same with) the *outer measure* in the Lebesgue measure theory.

Let S' be the subclass of \mathcal{H} defined by $\{X \mid X \in \mathcal{H}, \mu^*(Y) = \mu^*(Y \cap X) + \mu^*(Y - X)$ for any set Y in $\mathcal{H}\}$, which may be understood to be the class of the *measurable* sets with respect to μ^* .

Then it can be verified that S' is a pseudo- σ -ring containing (but, in general, not generated by) \mathcal{R} and that the map μ^* has the following properties:

Lemma 4. $\mu^*(X) = \mu(X)$ for any X in \mathcal{R} . Lemma 5. $\mu^*(X \cup Y) = \mu^*(X) + \mu^*(Y)$ for X, Y in S' such that $X \cap Y = \phi$.

⁴⁾ For our present purpose to prove Lemma 1, this condition can be replaced by a slightly weaker one: if $X \in \mathcal{R}$, $X_i \in \mathcal{R}$, $X \supset X_i$, $i=1, 2, \cdots$, and $X_j \cap X_k = \phi$ for $j \neq k$, then, for any neighbourhood U of the unit element of G, we can find a positive integer i_0 such that $\mu(X_i) \in U$ for any $i \ge i_0$. The bounded variation property of the measure μ is used in proving Lemma 2.

Lemma 6. $\mu^*(X_i) \rightarrow \mu^*(X)$ as $i \rightarrow \infty$ for X, X_i in \mathcal{H} , $i=1, 2, \cdots$, such that $X_i \uparrow X$ as $i \rightarrow \infty$.

Corollary. $\mu^*(X_i) \rightarrow 0$ as $i \rightarrow \infty$ for $X_i \in S', i=1, 2, \cdots$, such that $X_i \downarrow \phi$ as $i \rightarrow \infty$.

This implies that the restriction ν' of μ^* to S' is a G-valued measure defined on the pseudo- σ -ring S'. Since S is contained in S', the restriction ν of μ^* on S is also a measure. Lemma 4 shows that these measures are extensions of μ .

Thus we can prove that there exists at least one G-valued measure ν on S which is an extension of μ . It is also verified that such an extension is uniquely determined and that the measure ν is of bounded variation, which accomplishes the verification of the theorem.

Remark. As is seen above, there exists a measure ν' on the pseudo- σ -ring \mathcal{S}' which is an extension of μ (and is also an extension of ν), but the uniqueness of ν' no longer holds for \mathcal{S}' .

3. Completion of a measure. Let the notations in section 2 be reserved and let \mathcal{N} be the class of all sets N such that $N \subset X$ for some set X belonging to the class $\mathcal{N}_0 = \{X \mid X \in \mathcal{S}, \nu(Y) = 0 \text{ for} any set Y in <math>\mathcal{S}$ such that $Y \subset X\}$. Then we have the following theorem.

Theorem 2. Let \overline{S} be the class $\{(X-N) \cup (N-X) | X \in S, N \in \mathcal{N}\}$. Then \overline{S} is a pseudo- σ -ring containing S together with \mathcal{N} and there exists a unique G-valued measure $\overline{\nu}$ on \overline{S} satisfying the following conditions:

1) $\overline{\nu}(X) = \nu(X)$ if $X \in \mathcal{S}$,

2) $\overline{\nu}(N) = 0$ if $N \in \mathcal{N}$.

Before giving the proof, we shall give some remarks which are well known. Defining X + Y and XY by $(X - Y) \cup (Y - X)$ and $X \cap Y$, respectively, for each pair X, Y of subsets of M, the class \mathcal{M} of all the subsets of M becomes a ring in the algebraic sense of the word, and a class \mathcal{A} of subsets of M is a ring in the set theoretical sense if and only if \mathcal{A} is an algebraic subring of \mathcal{M} .

In the terminology in the above remarks, it can be seen that \mathcal{N} is an ideal of the ring \mathcal{M} , so that $\overline{\mathcal{S}}$, which may be written as a sum of a subring \mathcal{S} and an ideal \mathcal{N} of \mathcal{M} , is a subring of \mathcal{M} and consequently is a ring in the set theoretical sense.

Proof of the theorem. The proof of the fact that \overline{S} is a ring being given above, we shall show that \overline{S} contains $\bigcap_{i=1}^{\infty} X_i$ for $X_i \in \overline{S}$, $i=1, 2, \cdots$, which assures us that \overline{S} is a pseudo- σ -ring.

No. 4]

⁵⁾ Refer to the footnote 2).

⁶⁾ A regular outer measure in the Lebesgue measure theory has this property ([1] p. 53).

M. TAKAHASHI

By definition, we can write, for $i=1, 2, \cdots, X_i = Y_i + N_i$, where Y_i is a set in S and N_i is a subset of M which is contained in some set Z_i in S of which any subset W_i belonging to S satisfies the condition $\nu(W_i)=0$. The formula $\bigcap_{i=1}^{n} X_i \subset Y_1 \cup Z_1 \in S$ implies that we may assume that $N_i, i=1, 2, \cdots$, are contained in some fixed set in S. Then we have $N \in \mathcal{N}$ if we write $N = \bigcup_{i=1}^{n} N_i$. When $\bigcap_{i=1}^{n} X_i$ and $\bigcap_{i=1}^{n} Y_i$ are denoted by X and Y respectively, we get $X = \bigcap_{i=1}^{n} ((Y_i - N_i) \cup (N_i - Y_i)) \subset \bigcap_{i=1}^{n} (Y_i \cup N) = Y \cup N$ and $X \supset \bigcap_{i=1}^{n} (Y_i - N) = Y - N$, which give us $X - Y \subset N$ and $Y - X \subset N$. Thus we have $X + Y = (X - Y) \cup (Y - X) \subset N$ which implies that $X + Y \in \mathcal{N}$, and accordingly we have $\bigcap_{i=1}^{n} X_i = X = Y + (X + Y) \in S + \mathcal{N} = \overline{S}$. The fact that \overline{S} contains S and $\overline{\mathcal{N}}$ is obvious.

The existence of the measure $\overline{\nu}$ is shown as follows. It is easily seen that $\mathcal{M}_0 = S \cap \mathcal{M}$ and that there exists a unique map ν_0 of the residue class ring S/\mathcal{M}_0 into G such that $\nu_0(\overline{X}) = \nu(X)$ if the residue class \overline{X} contains X. Let φ be the canonical isomorphism of $\overline{S}/\mathcal{M} = (S+\mathcal{M})/\mathcal{M}$ onto $S/\mathcal{M}_0 = S/(S \cap \mathcal{M})$. Putting, for $X \in \overline{S}, \overline{\nu}(X) = \nu_0(\varphi(\overline{X}))$, where \overline{X} is the residue class containing X, we obtain the measure $\overline{\nu}$ required. The uniqueness of the measure $\overline{\nu}$ is clear and thus the theorem is proved.

This measure $\overline{\nu}$, which corresponds to the *completion* of ν in the Lebesgue measure theory, can be proved to be of bounded variation. It is also seen that \mathcal{N} coincides with the class $\{X \mid X \in \overline{S}, \overline{\nu}(Y) = 0$ for any set Y in \overline{S} such that $Y \subset X\}$, which implies that the completion $\overline{\overline{\nu}}$ of $\overline{\nu}$ concides with $\overline{\nu}.^{\tau_1}$

We shall state the following theorem without proof.

Theorem 3. If G satisfies the first condition of countability, then \overline{S} and $\overline{\nu}$ coincide with S' and μ^* (strictly speaking, the restriction of μ^* on S') respectively.

We shall close this paper by noticing that the Lebesgue measure can be constructed along the line of these theorems taking some sets 'of measure ∞ ' into consideration.

Reference

[1] P.R. Halmos: Measure Theory. Van Nostrand (1950).

⁷⁾ The completeness of a measure may be defined as follows: given a measure λ on a ring \mathcal{P} taking values in a topological additive group F, the measure λ is complete if the ring \mathcal{P} contains the class $\mathcal{L}=\{X \mid X \in \mathcal{P}, \lambda(Y)=0 \text{ for any set } Y \text{ in } \mathcal{P} \text{ such that } Y \subset X\}$. Then our measure $\overline{\nu}$ is a complete measure which is an extention of ν .