103. Axiom Systems of B-Algebra. VI

By Shôtarô Tanaka
(Comm. by Kinjirô Kunugi, m.J.A., May 12, 1966)

In this note, by an algebraic formulation of the classical propositional calculus axiom systems given by Frege (see, [6]) and Russell (see, [4]), we shall give new axiom systems which are equivalent to the B-algebra defined by K. Iséki (see, [2]).

Let $M=\langle X, 0, *, \sim\rangle$ be an abstract algebra satisfying the following axioms:

$$
F 1 \quad x * y \leqslant x .
$$

$$
F 2 \quad(x * y) *(y * z) \leqslant(x * y) * z
$$

$$
F 3 \sim x * \sim y \leqslant y * x
$$

$$
F 4 \quad x \leqslant \sim(\sim x)
$$

F $5 \sim(\sim x) \leqslant x$.
F6 $0 \leqslant x$.
$D 1$ If $x \leqslant y$ and $y \leqslant x$, then we define $x=y$.
$D 2 x \leqslant y$ means $x * y=0$.
Then the abstract algebra \boldsymbol{M} is called a B-algebra (for details, see, [2]).

Consider the following axiom systems.
(1) $x * y \leqslant x$.
(2) $(x * z) *(y * z) \leqslant(x * y) * z$.
(3) $x * y \leqslant \sim y * \sim x$.
(4) $0 \leqslant x$.
(5) $x \leqslant y$ and $y \leqslant x$ imply $x=y$.
(3') $\sim x * y \leqslant \sim y * x$.
(3') $x * \sim y \leqslant y * \sim x$.
($3^{\prime \prime \prime}$) $\sim x * \sim y \leqslant y * x$.
According to the definition given by K. Iséki, if $\langle X, 0, *, \sim\rangle$ satisfies axioms (1), (2), (3), ((3'), ($\left.\left.3^{\prime \prime}\right),\left(3^{\prime \prime \prime}\right)\right),(4),(5)$, and (6) it is called a $B(N B, B N, N B N)$-algebra respectively.

First we shall prove that $F 1-F 6$ axioms system is a B-algebra.
By axioms $F 4, F 5$, and $D 1$, we have
$7 \sim(\sim x)=x$.
In axiom $F 3$, if we substitute $\sim x$ for x and $\sim y$ for y, then we have $\sim(\sim x) * \sim(\sim y) \leqslant \sim y * \sim x$. Hence by 7, we have
$8 x * y \leqslant \sim y * \sim x$.
$F 1, F 2,8, F 6, D 1, D 2$ hold in $F 1-F 6$ axioms system, it is a B-algebra.

Next we shall give a proof that the B-algebra satisfies $F 1-F 6$. For proofs, we freely use some powerful results in K. Iséki's paper (see [1]).

His results are read as:
Lemma 1. Any NB-algebra (or BN-algebra) is an NBN-algebra.
Lemma 2. Any B-algebra is an NB-algebra and a $B N$-algebra. $\sim(\sim x)=x$ holds in B-algebra.

By Lemma $2, x \leqslant \sim(\sim x)$ and $\sim(\sim x) \leqslant x$ hold in B-algebra.
By Lemma 1 and 2, any B-algebra is an $N B N$-algebra, then $\sim x * \sim y \leqslant y * x$. The proof is complete.

Further we shall prove that the following $R 1-R 7$ axioms system is equivalent to the B-algebra defined by K. Iséki (see [3]). He has proved that a B-algebra is equivalent to the following $H 1-H 5$ axioms system (see, [5]).

$$
H 1 \quad x * y \leqslant x
$$

$$
H 2 \quad(x * y) *(x * z) \leqslant z * y
$$

H $3(x * y) *(z * y) \leqslant x * z$.
H $4 \quad x * \sim y \leqslant y$.
H $5 x *(x * \sim y) \leqslant x * y$.
$R 1-R 7$ axioms system is given as follows:
$R 1 \quad x * y \leqslant x$.
$R 2(x * y) *(x * z) \leqslant z * y$.
R $3(x * y) * z \leqslant(x * z) * y$.
$R 4 \quad x \leqslant \sim(\sim x)$.
$R 5 \sim x \leqslant \sim x * x$.
R $6 \sim x * y \leqslant \sim y * x$.
$R 7 \quad 0 \leqslant x$.
$D 1 x \leqslant y$ means $x * y=0$.
$D 2$ If $x \leqslant y$ and $y \leqslant x$, then we define $x=y$.
In $R 3$, we substitute $x * y, z * y$, and $x * z$ for x, y, and z respectively, then the right side is identical with $R 2$. Hence by 7, we have
$8(x * y) *(z * y) \leqslant x * z$.
In $R 3$, putting $y=x$ and $z=(x * y) * x$, we have $(x * x) *((x * y) * x) \leqslant$ $(x *((x * y) * x)) * x$. By $R 1$ the right side is equal to 0 . Hence we have $x * x=(x * y) * x$. Therefore by $R 1$ we have
$9 x * x=0$.
Next we shall prove the converce. It is proved by Prof. K. Iséki that in any B-algebra hold the syllogistic law, the commutative law, $x=\sim(\sim x)$ and $\sim x * y \leqslant \sim y * x$. These are $R 2, R 3, R 4$, and $R 6$.

Further in any B-algebra hold the followings (see, [3]):
a) $x * x=0$.
b) $x *(x *(\sim y)) \leqslant x * y$.

In b), if we put $x=\sim x, y=\sim x$, then we have $\sim x *(\sim x *(\sim(\sim x)) \leqslant$ $\sim x * \sim x$. Hence we have $\sim x *(\sim x * \sim(\sim x))=0$. This means
c) $\sim x \leqslant \sim x * x$. The proof is complete.

If we put $x=\sim x$ and $y=x$ in $R 6$, then we have $\sim(\sim x) * x \leqslant$ $\sim x * \sim x$. The right side is equal to 0 by 9 , Hence by 7 , we have $\sim(\sim x) * x=0$. Therefore we have
$10 \sim(\sim x) \leqslant x$. By $R 4,10$, and $D 2$, we have the following
$11 \sim(\sim x)=x$.
In $R 6$, if we put $x=\sim x, y=\sim y$, then by 11 , we have
$12 x * \sim y \leqslant y * \sim x$.
In 8 , put $z=z *(\sim y), x=y * \sim z, y=z$, and we have $((y * \sim z) * z) *$ $((z * \sim y) * z) \leqslant(y * \sim z) *(z * \sim y)$. The right side is equal to 0 by 12 , and further the second term of the left side is equal to 0 by $R 1$. Hence we have $(y * \sim z) * z=0$. Therefore
$13 x * \sim y \leqslant y$.
From axiom 2 i.e., the logical syllogistic law, we have the following. If $z \leqslant y$, then $x * y \leqslant x * z$, i.e., $z * y=0$ implies $(x * y) *(z * x)=0$. In the above, we put $z=z * \sim y, y=y * \sim z$, by 12 we have
$14 x *(y * \sim z) \leqslant x *(z * \sim y)$.
In $R 5$ we substitute $\sim x$ for x, then we have $\sim(\sim x) \leqslant \sim(\sim x) * \sim x$, and further by 11 we have
$15 x \leqslant x * \sim x$.
In the syllogistic law, if we put $y * z$ into z, and $(w * z) *(w * y)$ into y, then by $R 2$ we have
$16 x *(y * z) \leqslant x *((w * z) *(w * y))$.
In 6 , if we put $x=(x *(y * z)) *(x *(y * w)), y=z, z=w, w=y$, then we have $((x *(y * z)) *(x *(y * w))) *(z * w) \leqslant((x *(y * z)) *(x *(y * w))) *$ $((y * w) *(y * z))$. The right side is equal to 0 , because it is identical with $R 2$ substituted $y * z$ for y and $y * w$ for z. Hence by $R 7$ we have
$17(x *(y * z)) *(x *(y * w)) \leqslant z * w$.
Let us put $x=x *(y * z), y=z * w, z=x *(y * w)$ in $R 3$, then by 17 we have $((x *(y * z)) *(z * w)) *(x *(y * w)) \leqslant 0$. Hence by $R 7$ and $D 1$, we have
$18 \quad(x *(y * z)) *(z * w) \leqslant x *(y * w)$.
In the above, if we put $y=x, z=y, w=\sim x$, then we have $x *(x * \sim x)$ as the right side, and $(x *(x * y)) *(y * \sim x)$ as the left side. On the other hand by 15 the former is equal to 0 , then by $R 7$ we have $(x *(x * y)) *(y * \sim x)=0$. By $D 1$ we have
$19 x *(x * y) \leqslant y * \sim x$.
Putting $x=x *(x * y), y=x, z=y$, in 14, then we have $(x *(x * y)) *$
$(x * \sim y) \leqslant(x *(x * y)) *(y *(\sim x))$. The right side is equal to 0 by 19. Therefore by $R 7$ and $D 1$ we have
$20 x *(x * y) \leqslant x *(\sim y)$.
Putting $\sim y$ into y in the above, we have $x * \sim(\sim y)$ as the right side, and further by $11 \sim(\sim y)=y$. At the same time the left side is $x *(x * \sim y)$. Hence we have
$21 x *(x * \sim y) \leqslant x * y$.
Axioms $R 1, R 2$, theses 8,13 , and 21 are $H 1-H 5$.

References

[1] K. Iséki: Algebraic formulation of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).
[2] -: Axiom systems of B-algebra. Proc. Japan Acad., 41, 808-811 (1965).
[3] -: Some theorems in B-algebra. Proc. Japan Acad., 42, 30-32 (1966).
[4] K. Iséki and S. Tanaka: On axiom systems of propositional calculi. V. Proc. Japan Acad., 41, 661-662 (1965).
[5] -: On axiom systems of propositional calculi. X. Proc. Japan Acad., 41, 801-802 (1965).
[6] S. Tanaka: On axiom systems of propositional calculi. IX. Proc. Japan Acad., 41, 798-800 (1965).

