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In his paper 2, Skolem has proved the consistency of the
system of the following axioms

( 1 yvz(z e y(z))
and

( 2 ) vxvy(vz(z e xz e y)(((x)((y))),
where the formula in (1) is constructed only from e,
/ and variables. The purpose of this paper is to show the following
generalization of this Skolem’s theorem. This generalization implies
Namba’s result in [1 as well.

Theorem. The system of axioms (1) and (2) is consistent if
no logical constants except V, A, /, k/, v, and occur in

For the proof of his theorem, Skolem has introduced a model
satisfying the axioms. Now it will be shown that Skolem’s model
satisfies the axioms even if has quantifiers.

Let be a domain of individuals A, B(O_i<w) and W, and
we define the relation e as follows"

(i) AeB if and only if j_i,
(ii) BeA. if and only if ij,
(iii) A e A and B e B-for all i and j,
(iv) Ae W, WeA, Be W, and WeB for all i,
(v) We W.
Then is linearly ordered as

Ao_A
_
W B_Bo,

where
_

denotes the inclusion relation as usual. Therefore the
operations ab and ab can be defined for any a and b in . The
individuals A0 and B0 are written 0 and V respectively.

We define the operations * and E as follows:
A*-A+, W*- W, B*-----B+,

V if aeb,E(a, b)-
0 otherwise.

Then Yx(x e W-qx e x), Yx(x e a*-qa e x), and Yx(x e E(a, b)-qa e b)
are valid in ). Since the operations , [J, *, and E are monotone
with respect to _, we have the following
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Proposition 1. If f(a) is constructed from O, V, W, , J,
*, E, and variables, then

YxYy(xyf(x)_f(y))
is valid in ).

Consequently, we obtain the following
Proposition 2. Let f(a) be a term consisting of O, V, W, ,

[2, *, E, and variables, such tha
Yz(z e f(a)-. (z, a))

is satisfied in . Then
Vz(z e f(O)-Vx(C)(z, x))

and
vz(z e f( V)-3x(C)(z, x))

are satisfied in .
Proposition 3. For any formula containing no other logical

constants than V, A, A, /, , and 3, there exists a term t con-
structed only from O, V, W, , [_), *, E, and variables, such that

vz(z e
is satisfied in .

This proposition can be easily proved by induction on the con-
struction of the formula . Since axiom (2) is evidently valid in ,
this completes the proof of Theorem.

Let ’ be the model whose only difference from is that e is
defined by (i)-(iv)and We W. Then axioms (1) and (2) are satisfied
in ’ as well. As shown in [2, there is no finite model satisfying
axiom (1).
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