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The purpose of this note is to prove the following
Theorem 1. Let A be a nonempty, weakly compact and convex

subset of a uniformly convex normed space,1 and be a nonempty
commutative family of contraction mappings of A into itself.
Then the set of all common fixed points for is nonempty, closed
and convex.

This follows from Theorems 2 and 3 below.
Following Brodskii and Milman 1, we say that a bounded convex

subset S of a normed space has normal structure provided for each
convex subset B of S which contains more than one point, there
exists a point a e B such that sup II a-y II d(B), where d(B) denotes
the diameter of B. A point ae B is said to be a diametral point
of B if sup II a-y II--- d(B).

Theorem 2. Each bounded convex subset of a uniformly convex
normed space has normal structure.

Proof. It is easily seen that in a normed space E if a bounded
subset BE which contains more than one point has a nondiametral
point a e B, then a is a nondiametral point of B for every =/=0,
and x + a is a nondiametral point of x /B for every x e E. Therefore
it is sufficient to show that in a uniformly convex normed space,
each bounded convex subset B of diameter i which has {0} as a
proper subset, contains a nondiametral point of it.

Assume that 0 is a diametral point of B. Then we can find a
sequence {a} of points of B such that

1 :> a II > 1 ---1 for every n >__ 2.

Suppose that the sequence {(1/2)a} consists of diametral points of
B. Then there exists a sequence {b}: of points of B such that

1 al:>llb--- 11>1- for every n:>2,

1) A normed space is said to be uniformly convex if II x I1-<1, II y I1-<1, and
lim II x,+y 11--2 imply lim II x,-y I1=0.

2) A mapping f of a subset A of a normed space into A is called a contraction
mapping if IIf(x)-f(y)llll-yll for all x, yeA.
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and hence lira II b+(b-a)ll-2. Now since li t1 1 for every n>_2,
and since lim IIb-(b-a)]]-1, the uniform convexity of the space
implies that there exists an n__2 such that tlb-atl>l, which is
absurd. Consequently, the sequence {(1/2)a} contains a nondiametral
point of B.

Recently, Kirk [2 has proved the following
Theorem. Let A be a nonempty, bounded, closed, and convex

subset of a reflexive Banach space, and suppose that A has normal
structure. Then each contraction mapping of A into itself has a
fixed point.

In this theorem, the assumption reflexivity of the space can be
weakened, and in fact we can show the validity of the following
theorem by the method of Kirk. However, for the sake of com-
pleteness, we give the proof.

Theorem :. Let A be a nonempty, weakly compact and convex
subset of a normed space, and suppose that A has normal structure.
Then each contraction mapping f of A into itself has a fixed point.

Proot. Since A is weakly compact, we can show by using Zorn’s
lemma that there exists a minimal nonempty weakly compact and
convex subset BA which is invariant under f. Let

r(B) sup II x--y II, r(B) inf r(B),
yB

and let, for each positive integer n,

B(x)-B Ix+ (r(B)+-) V1,
where V denotes the closed unit ball of the space. It is easy to see
that the sets C.= f B(x) form a decreasing sequence of nonempty

B
weakly closed and convex .subsets of the weakly compact set B, and
hence B- f C,- {x e B; r(B)-r(B)} is nonempty weakly compact and
convex subset of B. We shall show that B=B. To this end, it
suffices, by the minimality of B, to prove that B is invariant under f.
Let x e B. Then for every y e B, we have II f(x)-f(y) II <-II x.-y II <-
r(B), and so f(B) is contained in the set f(x) + r(B) V. Therefore the
nonempty weakly compact and convex set B If(x) + r(B)V is invariant
under f, and hence the minimality of B implies that B is contained
in the set f(x)+r(B)V, which shows that f(x)e B. Thus Bo is
invariant under f, and so B=B. Now suppose that the set B contains
more than one point. Then, since A has normal structure, we can
find a nondiametral point a eB. Hence r(B)d(B). If x, y eBb,
then IIx-yll<_r(B)=r(B), and so we have

d(B)= sup II x--y It<_r(B)<_r(B)<d(B),
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which contradicts the fact that Bo--B. Thus the set B consists of
a single point, and the proof is completed.

We shall now proceed to prove Theorem 1.
For each fe , we denote by F the set of all fixed points of f.

From Theorems 2 and 3, it follows at once that each F is nonempty.
We shall show that each F is convex. Let x, y e F, 0<_2<_1, and
let z=(x-y)+y=(1-)(y-x)+x. Then we have

and hence we have ]] x-f(z) ]]= ]] x-z ]] and II y-f(z) ]]= II y-z ]]. On
the other hand, since a uniformly convex normed space is strictly
convex,) f(z)z implies

1 1IIx--(z+f(z)) I<’1 -z II and y--(z+f(z))
which yield a contradiction ]1 x-y I1 < II x-y I]. Consequently z e Fr,
and Fr is convex.

As can readily be seen, Fr is closed, and hence it is weakly

closed. Consequently for every fi, f, ..., f, e , the set F= Fri=l

is weakly compact and convex. In addition, if f e if, then for every
x e F, we have

f(x)=ff(x)=fif(x) for each i= 1, 2, ..., n,
and hence f(x)e F. Thus F is invariant under each fe ft. Therefore
if F is nonempty, then by Theorems 2 and 3, each fe ff has a fixed
point in F., that is FrF,. This shows that the family
{Fr; fe if} of weakly closed and convex subsets of the weakly compact
set A has the finite intersection property. Hence the family has a
nonempty intersection, which is closed and convex.
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3) A normed space is strictly convex if Iix+yll<2 whenever
and x#y.


