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An operator A on a Hilbert space is called dissipative if its
imaginary part is non-negative, i.e.,

1 (A--A*Ira(A)-( >= O.
In the present paper, we shall concern ourselves with the spectral
properties of dissipative operators with completely continuous imaginary
part, and deduce the spectral decomposition of operators of this class
in the ease of real spectrum. Consequently, for completely continuous
dissipative operators with real spectrum, the canonical reduction of
Jordan type will be established.

For the sake of simplicity, we shall assume that our (complex)
Hilbert space is separable. By an operator we always understand a
bounded linear transformation on a Hilbert space. Let A be an operator
on a Hilbert space H. Then we denote by a(A) the spectrum of A
and by P(A) (resp. C,(A), Ro(A)) the point (resp. continuous, residual)
spectrum of A. If a(A)--P(A) (resp. a(A)--Co(A)), we say that A
has a pure point (resp. continuous) spectrum.

As in 5-6, throughout this paper we make use of the concept
of von Neumann algebra. Let us recall the terminologies and the
notations used in 5-6. An operator A is said to be primary if
the von Neumann algebra R(A) generated by A is a factor (that is,
its center consists of scalar multiples of the identity operator I), and
a primary operator A is said to be of type I (resp. of type Ioo) if a
factor R(A) is of type I (resp. of type I).

1. A typical example of completely continuous dissipative opera-
tors is the integral operator A of Volterra type on L(0, 1) defined by

(Af)(x)-i f(t)gt.

It is well known that A is a primary operator with non-hermitian
rank 1 and (A)= C(A)= {0}, that is, A has a pure continuous spectrum.
In 5-[6, we have shown that a non-scalar primary operator with
non-hermitian rank 1 has, in general, a pure continuous spectrum in
case a(A) is real. This spectral property may be generalized to the
dissipative case.
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For simplicity we say that an operator A belongs to the class
(iC) if its imaginary part Ira(A) is completely continuous. Now let
us concentrate our attention on the dissipative operators of the class
(iC). The first object is to show the spectral properties of our
operators as follows:

Proposition 1. Let A be a non-scalar primary dissipative
operator of the class (iC). Then, for e a(A);
(1.1) e P(A) if and only if is non-real and
(1.2) e C(A) if and only if is real;
and moreover we have
(1.3) R(A) is empty.

The proof of Proposition 1 is based on the following two lemmas
which give a key to our observation.

Lemma 1. Let A be a non-scalar primary dissipative operator
on a Hilbert space H and let a complex number such that m
is not contained in the open interval (0, II Ira(A)II). Then the range

of A-2I is dense in H. That is, for every real number , the
range of A.-2I is dense in H.

Proof. We denote by the range of A-2I and by the
orthogonal complement of /. Then, for every vector e , we have

(2ilm(A), }..=([(A--I)--(A*--I)+2igmI,
=(A--2I), }-, (A-2I)}+2idm,
=(2im,

Thus
(1.4) ((Im(A)-mI), }-0 for every vector e
Here, if m2.<__ O, 1re(A)-3mI>__ O, and if m>-_ II Ira(A) II, we have
Im(A)-3mI.<__O. Therefore, in both cases the equality (1.4) implies
that (Im(A)--,gmI)-O. This means that A-A*+2i3m for
every vector e . Since is clearly invariant by A*, reduces
the operator A. In other wards, the projection P on belongs to
R(A)’. On the other hand, it is easy to see that P belongs to R(A)
(note that / reduces every operator of R(A)’). Accordingly, P must
be I or 0 since A is primary. But obviously PI, and hence P=0,
that is to say, 4--H.

Lemma 2. Let A be a non-scalar primary dissipative operator.
Then every point e P(A) is non-real and 0 m II Ira(A)II. That
is, A does not have a real proper value.

Proof. Suppose that there exists e Po(A) such that m
(0, II Ira(A)II), and let /denote the proper subspace of A corresponding
to (i.e., the proper subspace of (-A) corresponding to (-)). Then
it is easily seen that / is orthogonal to the range of (-A*)+L
However, since (-A*) is dissipative, it follows from Lemma 1 that
the range of (--A*)+I is dense in H if m(--)
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(i.e., qm e (0, II Ira(A)I I)). Thus //contains only zero vector, which
is the contradiction.

We are now in position to prove the proposition. Indeed, our
assertion follows immediately from the above lemmas.

Proof of Proposition 1. It is known in 1; Theorem 1 that
for an operator A of the class (iL),
(1.5) every non-real point e a(A) belongs to P(A).
Therefore, (1.1) is directly obtained by the fact (1.5) and lemma 2.
(1.2): It is clear from the fact (1.5) that C(A)consists of real
numbers. If 2 e a(A) is real, (1.1) and lemma 1 imply e C(A). Now
(1.3) is a direct consequence of the fact (1.5) and (1.2).

2. In [5-6, we have shown that an operator A of the class
(iF) on a Hilbert space H is decomposed by a unique countable family
of mutually orthogonal central projections P0, P(i e I) in R(A) into
the form
(2.1) A=A0(,e A),
where the restriction Az0 of A to Poll is a self adjoint operator, the
restriction A of A to PH(i e I) is a primary operator of type I,(o=
n or )(which belongs to the class (iF)) and P=]e P is the
projection on the subspace generated by vectors of the form
(?e Im(A)H). Now let us consider a dissipative operator A of the
class (iF) whose spectrum is real. Then from the nature of the
spectrum as mentioned in the preceding section and the result (2.1),
we can see more exactly the structure of A which may be regarded
as the spectral decomposition of A in a certain sense.

Theorem 1. Let A be a dissipative operator of the class (i)
with real spectrum on a Hilbert space H. Then A is decomposed
by a unique countable family of mutually orthogonal central
projections Po, P(i I) in R(A) into the form

A=Avo(,eAe),
where the restriction A. of A to Poll is a self adjoint operator
and the restriction A. of A to PH(i e I)is a primary operator of
type Lo which has a pure continuous spectrum (and which is a
dissipative operator of the class (i)).

Proof. Since a(A) is real, in the decomposition (2.1) every

a(Az)(i e I) is also real. In this case, by the fact that PH is generated
by vectors of the form A( e Ira(A)), each Ae does not admit to
be a scalar operator. It follows from Proposition 1 that each operator

Ae has a pure continuous spectrum. Consequently, it is impossible
that A. is of type I(n=l, 2,...) since a primary operator of type
I. has necessarily a pure point spectrum by reason that the von
Neumann algebra generated by it is .-isomorphic to the algebra of
all operators on a n-dimensional Hilbert space.
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Next let us restrict our attention to the completely continuous
dissipative operators. Then Theorem 1 gives the complete spectral
reduction for completely continuous dissipative operators with real
spectrum.

Theorem 2.1) Let A be a completely continuous dissipative
operator with real spectrum on a Hilbert space H. Then A is
decomposed by a unique countable family of mutually orthogonal
central projections Po, P(i e I) in R(A) into the form

A=Ao(e(R)A),
where the restriction A of A to Poll is a self adjoint (completely
continuous) operator and the restriction A of A to PH(i I) is a
quasi-nilpotent primary (completely continuous, dissipative) operator
of type I.

This fact means that the study of non-self adjoint operators of
this class may be essentially reduced to that of quasi-nilpotent primary
operators of type I (belonging to this same class). Moreover, for
operators of this class, it gives a decomposition analogeous to the
Jordan’s canonical reduction for operators on a finite dimensional
Hilbert space. Indeed, putting S=Ae0(R)0 and N=0(R)(-e(Ae),
we have the following

Theorem . A completely continuous dissipative operator with
real spectrum is expressible in the following form:

A=S+N,
where S is a self adjoint (completely continuous) operator and N
is a quasi-nilpotent (completely continuous, dissipative)operator
which commutes with S.

This shows that our operator is a spectral operator in the sense
of N. Dunford [3.

Corollary. A completely continuous dissipative operator with
real spevtrum is a spectral operator.

:. Related resultso By what we have seen in the preceding
section the following spectral properties of a dissipative operator (not
necessarily primary) of the class (iF) can be deduced.

Proposition 2. Let A be an arbitrary dissipative operator of
the class (iC). Then
(3.1) if e P(A), O_m_ II Ira(A)
(3.2) R(A) is empty.

Proof. (3.1): We may assume that e P(A) is non-real. Then, in
the decomposition (2.1)of A, belongs to P(A.) for some i e I. In
case Ae is a (non-real) scalar operator,

1) From this result it is readily obtained that a completely continuous dissipative
operator with real spectrum belongs to the class (9) defined by M. S. Brodskii [2.
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[[ Im(A)[[. If Ae is a non-scalar operator, 0<m< [[ Ira(A)[I by
Proposition 1. (3.2). From Proposition 1 we can see that in (2.1)
each of Ro(Ao and Ro(Ap)(i e I) is empty. Then the assertion is
immediately concluded. In fact, e R(A) implies that for each k-
0, i, (A-I)PH is dense in PH. Thus the range of A-.I is dense
in H. This contradicts to the fact that is in R(A).

An operator A on a Hilbert space is called completely non-self
adjoint if there does not exist a non-zero reducing subspace / of
A such that the restriction A of A to is a self adjoint operator.
For an arbitrary operator A on a Hilbert space H, we denote by K
the range of Ira(A)and by E the projection on the subspace /, and
we consider the subspace H generated by vectors of the form A
(eK, n-0, 1,2, ...)and denote by P the projection on H. We
have shown in 6 that P is the central support of E in R(A)(i.e.,
the minimal central projection containing E). From this fact it follows
that the following conditions are equivalent to each other.
(3.3) The central support of E in R(A) is the identity operator.
(3.4)) H is generated by vectors of the form A (9 K, n-0, 1, ...)
(3.5) A is completely non-self adjoint.

For the proof, we need only to verify the equivalence (3.4)(3.5).
(3.4)-(3.5): Assume that there exists a non.zero projection Q in R(A)’
such that A is self adjoint. Then EQ-QE=-O (note that E e R(A)).
This implies E<__I-Q, and so P<__I-QI. (3.5)-.(3.4): If PI, A_
is self adjoint. This is the contradiction since I-PO belongs to
R(A)’.

Now we have seen that an operator has the decomposition
(3.6) A=A_(R)A.,
where A_e is self adjoint and A is completely non-self adjoint.
Moreover, as a direct consequence of the above statement, we can
obtain that a primary operator which is not a real scalar operator is
completely non-self adjoint. Recently C. Foias and B. Sz-Nagy [4
have pointed out that a completely non-self adjoint dissipative operator
does not have a real proper value. Hence some of our results may
be directly derived from this result.

As is well known, a self adjoint operator A can be reduced by
a projection R in R(A) to two cases" Aa has a pure point spectrum
and A_a has a pure continuous spectrum. We know that a similar
result holds for an operator with non-hermitian rank i in the case
of real spectrum (see [6). At the final step, we shall note here that
this fact is valid for the dissipative case.

Proposition 3. Let A be a dissipative operator whose spectrum

2) An operator satisfying this condition is called simple in
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is real. Then A is decomposed by a central projection R in R(A)
into the form

A=A@A_,
where Aa has a pure point spectrum and A_ has a pu,re continuous
spectrum.

Proot. From (3.6) A has the form A=A_A, where A_ is
self adjoint and A. is completely non-self adjoint. Moreover, as we
know, A_ has the decomposition A_,-Aa(R)A(_)_, where R is a
central projection in R(A) such that R<_I-P, Aa has a pure point
spectrum and A(_)_ has a pure continuous spectrum. Since the
spectrum of A. is real, the result [4 mentioned above shows that
A. has a pure continuous spectrum, because e R(A) yields that- is a proper value of the completely non-self adjoint dissipative
operator (- A.). Therefore, A_.-A(_)_@A has a pure continuous
spectrum as seen in the proof of Proposition 2-(3.2).
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