168. On Characterizations of I-Algebra. II

By Shôtarô Tanaka
(Comm. by Kinjirô Kunugi, m.J.A., Sept. 12, 1966)

In this paper, we shall prove that an axiom system of implicational calculus given by Wajsberg is equivalent to Tarski-Bernays' axiom system using an algebraic formulation.

In his paper [2], by the algebraic technique Prof. K. Iséki has proved that Tarski-Bernays' axiom system implies Wajsberg's system and other systems. Further Prof. K. Iséki refers Tarski-Bernays' axiom system as I-algebra. We shall show that Wajsberg axiom implies Tarski-Bernays system. We shall carry out the proof algebraically.

Let $\langle X, 0, *\rangle$ be an abstract algebra. (For the notion of this algebra and notations, see [1].) The algebraic formulations of Wajsberg axioms are given as the following 1)-2), D1-D3.

1) $x \leq x^{*}\left(y^{*} x\right)$,
2) $\left(x^{*} y\right)^{*}\left(z^{*} u\right) \leq x^{*}\left(z^{*}\left(u^{*} y\right)\right)$,

D1 $x \leq y$ means $x^{*} y=0$,
D2 $0 \leq x$,
D3 $x \leq y, y \leq x$ imply $x=y$.
In 2) we put $z=x, y=x$, then we have $\left(x^{*} x\right)^{*}\left(x^{*} u\right) \leq x^{*}\left(x^{*}\left(u^{*} x\right)\right)$. The right side is equal to 0 by putting $y=u$ in 1). Hence by D1, D 2 , and D3, we have
3) $x^{*} x \leq x^{*} u$.

Let $u=x^{*}\left(y^{*} x\right)$ in 3), then by 1) we have
4) $x \leq x$.

In 2) putting $x=\left(z^{*} x\right)^{*}\left(z^{*} y\right), y=y^{*} x$, and $u=z$, then we have $\left(\left(\left(z^{*} x\right)^{*}\left(z^{*} y\right)\right)^{*}\left(y^{*} x\right)\right)^{*}\left(z^{*} z\right) \leq\left(\left(z^{*} x\right)^{*}\left(z^{*} y\right)\right)^{*}\left(z^{*}\left(z^{*}\left(y^{*} x\right)\right)\right)$. The right side is equal to 0 by putting $x=z, y=x, u=y$ in 2). Further the second term of the left side equal to 0 by 4). Hence we have
5) $\left(z^{*} x\right)^{*}\left(z^{*} y\right) \leq y^{*} x$.

If we substitute $z^{*}\left(u^{*} y\right)$ for x in 2$)$, then the right side is equal to 0 by 4). Hence we have
6) $\left(z^{*}\left(u^{*} y\right)\right)^{*} y \leq\left(z^{*} u\right)$.

Putting $u=y, y=x$, and $z=y$ in 6), then by 4) we have
7) $y^{*}\left(y^{*} x\right) \leq x$.

If we put $y=y^{*}\left(y^{*} x\right)$ in 5), then by 7) we have
8) $z^{*} x \leq z^{*}\left(y^{*}\left(y^{*} x\right)\right)$.

Let $x=\left(z^{*} y\right)^{*} x, y=\left(z^{*} x\right)^{*}\left(z^{*}\left(z^{*} y\right)\right), z=\left(z^{*} x\right)^{*} y$ in 5), then we have

$$
\begin{gathered}
\left(\left(\left(z^{*} x\right)^{*} y\right)^{*}\left(\left(z^{*} y\right)^{*} x\right)\right)^{*}\left(\left(\left(z^{*} x\right)^{*} y\right)^{*}\left(\left(z^{*} x\right)^{*}\left(z^{*}\left(z^{*} y\right)\right)\right)\right) \\
\leq\left(\left(z^{*} x\right)^{*}\left(z^{*}\left(z^{*} y\right)\right)\right)^{*}\left(\left(z^{*} y\right)^{*} x\right)
\end{gathered}
$$

The right side is equal to 0 by substituting $z^{*} y$ for y in 5). Hence we have
9) $\quad\left(\left(z^{*} x\right)^{*} y\right)^{*}\left(\left(z^{*} y\right)^{*} x\right) \leq\left(\left(z^{*} x\right)^{*} y\right)^{*}\left(\left(z^{*} x\right)^{*}\left(z^{*}\left(z^{*} y\right)\right)\right)$.

In 7), put $y=y^{*}\left(y^{*} x\right)$, then by 7) we have 10) $z^{*} x \leq z^{*}\left(y^{*}\left(y^{*} x\right)\right)$.

The right side of 9) is the same form with the above formula 10), if we put $x=y, y=z$, and $z=z^{*} x$ in 10). Therefore we have 11) $\left(z^{*} x\right)^{*} y \leq\left(z^{*} y\right)^{*} x$.

If we put $z=y$ in 11), then we have $\left(y^{*} x\right)^{*} y \leq\left(y^{*} y\right)^{*} x$. On the other hand by D2 and 4), we have $0^{*} x=0$ and $y^{*} y=0$. Hence we have
12) $y^{*} x \leq y$.

Formulas 1), 5), and 12) are axioms of Tarski-Bernays' system. Therefore the proof is complete.

References

[1] K. Iséki: Algebraic formulations of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).
[2] Y. Imai and K. Iéski: On axiom systems of propositional Calculi. XIV. Proc. Japan Acad., 42, 19-22 (1966).

