
No. 7] 743

165. Some Applications of the Functional.
Representations of Normal Operators
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By Sakuji INOUE
Faculty of Science, Kumamoto University

(Comm. by Kinjir5 Kviv(II, M.J.A., Sept. 12, 1966)

Throughout the present paper we again treat the function
U() e * sated in Definition B and Theorem 60 of the preceding
one; that is, U() is a function belonging to * such that any point
2 of the denumerably infinite bounded set {}=,,,... assigned
arbitrarily is an essential singularity of U() in the sense of the
functional analysis, that the mutually disjoint closed domains

1, 2, 3,..., n) with {} =D=, assigned arbitrarily, form the

sets of singularities of U() in the sense stated in Definition B and
lie on the disc ] sup , and that U() is regular in the com-

plex -plane {:.,+} except for {2}UD.
heorem 6. Let {2} be everywhere dense on a closed or an

on reetifiable Jordan eurve F; let the ordinary art of the fune-
tion U(2)* stated above be a non-ero constant ; let e be an
arbitrary complex number, finite or infinite; let -su 2; let

(p, e) be the number (counted aeeording to the respective multi-
lieities) of e-9oints of U(2) in the closed domain Ao{2: pN 2 N +}
with <p<+; let (p, e) be the number of distinet e-oints
U(1) in Ao; let

[ 2 o log U(pe-’)]d (c-),

n(r, c)-n( c) gr n(, c) log p,N(p, c)-

and

I+ (r, c)--(c c) dr--(oo, c)log pN(p, c)-

for any p with a p + oo; and let

(c) 1- lira N(p, c)
+o re(p, oo)’

0(c)-1- lim N(p, c)
o+o re(p, oo)’
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t(c)-- lira N(p, c)--N(p, c)
-./o re(p, )

If

lira re(p, c +c(A)
-+0 log {1/(p-)}

then the set of values c for which O(c)>0 is countable; and on
summing over all such values c, the chain of inequalities ,{6(c)/ 0(c)}, O(c).<__ 2 holds.

Proof. We now consider the function f(2)-U(--] in the closed

domain ---{2.0__<[21__<-1} where a<p< +. Then f(2)is regular

in ,- and is expressible in the form

f()=+ _, c_ 0 -- <p<+
where the seeond member on the right is essentially an infinite series
such that the sum-function of the first and second rineial arts of U(2)
is given by C_2- in the domain {2" <12 IN + }. On the assump-
tion that e is any complex number, finite or infinite, we write (f, e)
for the number of e-oints of f(2) in the closed domain {2:0N 2 IN}
where fN, e-oints of order p being counted p times, and set

( ) (r c)-(O C) dr+(O, c) log 1,c (a<p<+),
r

where(0, c)0 ifandonlyif c , andwhere( ) -0. We

next write (, e) for the number of distinct e-oints of f(2) in ,
and set

( ) (r’c)--(O C) dr+(O,c)log
r

where

{ (c=)(o, c)- o (c )
and

/

log

for any p with a p + c.

dt (c=/:)

Then if we define e(-, c)(r 1, 2) as
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we can find from the inequality log a , log]al + log p valid
P"-I -’i

for any complex numbers a that e, c _<_ log [cl+ log 2 for -1, 2, and hence can analyze Nevanlinna’s first fundamental theorem
1, as follows:

where

(c)

0 (if c--c)
log.C_,l /s,(- c) (if[ c-, C_,-0 for )k-1, and C_.=/=0

In fact, for the special ease e- we attain to the second result
of (C) by considering the function

f()- 1
() ’ c_-’

F(2) --- C=,,, (2-0)

and the other two cases are trivial.
0n the assumption that

(D) lira
+0 log {1/(p-a)}

we set

and
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Then it follows from Nevanlinna’s theorem on deficient values
[2 that the set of values c for which (c)>0 is countable and
that

{(c) / (c)} =< , (c)__< 2
where denotes the sum taken over all such values c as (c)>0.
On the other hand, it is at once obvious that equality (, c)-
re(p, c) holds for any value c, finite or infinite. Moreover there is

no difficulty in showing by direct computations that both (---, c)-
N(p, c)and (, c)-(p, c)hold for every finite c and it is clear

that those four quantities equal 0 for c-. These results imply
that (D) is equivalent to (A) and that the relations (c)-(c), (c)-
O(c), and (c)-O(c) hold good for every complex value c, finite or
infinite.

The theorem has thus been proved.
Corollary 7. Let U() and a be the same notations as those in

Theorem 62, and let the condition (A) stuted before be satisfied.
Then, in the annular demain D{: a a+e} for any small
positive e, U() assumes infinitely often all finite complex values
except at most one (finite value). In addition, if c is a non-excep-
tional finite value of U() for D and if ()()() denotePl P2

distinct c-points of U() in D, the positive series (() -a) is

divergent.
Proof. Since, by hypotheses, U() is regular in the domain

{2: a< +} and assumes the value at -, and since
Theorem 62 implies that the number of exceptional values of U()
for D never exceeds 2, the former half of the corollary is a direct
consequence of this theorem. Furthermore the latter half is deduced
immediately from the fact that, according to Theorem 62,

(P,)--(,v)N(p, c) log ()() " -(, c) log p
(p,c)--(,c)

((, )--1, (, c)--O for c)

("’)-(,)(1+ #) -P)_(- c)loglog =I

where >(-i, 2, 3, ..., (p, c)-(, c)) are distinct c-points of
U(2) in the domain {2" p 2 ]< +} with a<p< + and that the
number of distinct c-points of U(2) in the domain {" a
is at most finite.

Theorem 63. Let the ordinary part of U(2) be a polynomial in
2. Then the results of Theorem 62 are also valid for this U(2).
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Proof. Suppose that the ordinary part of U(2) is given by
d

] e,2"(e:/:0). For case c:/:oo we consider the function (2, c)
defined by

Leap (-
Evidently (,c)is regular in the closed domain o-t{2"

We now write ’(, e) for the number of eros, with due count

multiplieity, of (2, e) in with N and g’(r, e) for the number

of distinct eros of (2, e) in . By using ’(, e) and ’(f, e) we define

N’(,c) and’(, c)respectively, as (, c)and(, c)were
introduced from (r, c) and (r, c) respectively; and we write

dt

same manner as before that

where e(, 0)-0. On the other hand,

and if we denote the right-hand member of this equality by
re(p, U-c) as usual, then

+
Ira(p, U-c)-m(p, U) log lcJ + log 2

and therefore e c log ]el + log2 for c0. For the special

case c-, the quantities N’(, e), N’(, e), and m’(, e) should
be defined directly from the funetion f(2)=U() with domain

and so it turns out as before that the equalities N’(,-/
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N(p, )--d log p, ’(-, )-.(p, )-- log p, and m’(-. )--
log U(pe-)ldt hold for the notations N(p, ),re(p,

N(p, ), and re(p, ) associated with our U(2)by the same methods
as in Theorem 62. Hence we have

and the equalities (E) and (F) lead us to the result that

where K , c

d log p (c- ).
This result corresponds to (B) in the course of the proof of

Theorem 62. Since, moreover, the equalities N’ )-,c N(p, c),

’(’e--N(P’e)’xp/
and m’(,e)-m(p,e)hold for every eom,lex

number e, finite or infinite, the validity of the resent theorem is
shown by the same reasoning as that used to rove the reeeding one.

Corollary 8. he results of Corollary 7 hold also for the func-
tion U(2) in heorem 68.

Proof. his corollary is a direct consequence of heorem 68,
as will be found immediately from the reasoning used to
Corollary 7.

Remark. Since, as demonstrated above, Nevanlinna’s first fun-
damental theorem and Nevanlinna’s theorem on deficient values both
are extended in the domain {i" < Ill N +} to the functions
of heorems 62 and 68 provided that these funetions satisfy
so also is the Nevanlinna theory itself based on his two theorems.

Correction to "8ome alieations of the funetional-reresentations
of normal oerators in Hilbert saees. XXI" (Proe. Japan Aead., ,

Page 587 line 6 should read "-].,x,,.-.. ,]’" instead of
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