190. Axiom Systems of B-Algebra
By Corneliu Sicoe
(Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1966)

In his note [1] Kiyoshi Iséki gave an algebraic formulation of propositional calculi and he defined B-algebra.

Other characterisations of B-algebra are given by K . Iséki, Y. Arai, and K. Tanaka (see [2]-[5]).

Let $\langle X, 0, *, \sim\rangle$ be an algebra where 0 is an element of a set X, $*$ is a binary operation and \sim is an unary operation on X. We write $x \leq y$ for $x * y=0$, and $x=y$ for $x \leq y$ and $y \leq x$.

The axiom system of B-algebra is given by (see [2])
H1. $x * y \leq x$,
H2. $(x * y) * z \leq(x * z) * y$,
H3. $(x * y) *(x * z) \leq z * y$,
H4. $x *(\sim y) \leq y$,
H5. $x *(x *(\sim y)) \leq x * y$,
H6. $0 \leq x$.
In this note we shall show that a B-algebra is characterized by the following axiom system.

$$
\begin{array}{ll}
\text { B1. } & (x * y) * z \leq x, \\
\text { B2. } & x * y \leq \sim y, \\
B 3 . & (x *(y * z)) *(x * y) \leq x *(\sim z), \\
B 4 . & 0 \leq x .
\end{array}
$$

Lemma 1. $H \Rightarrow B$.
In $H 2$, put $z=\sim y$, then by $H 4$, we have
(1)

$$
x * y \leq \sim y
$$

which is axiom $B 2$.
In $H 3$, put $x * z=z * y=0$, then
(2)

$$
x \leq y, y \leq z \text { imply } x \leq z
$$

In $H 1$, put $x=x * y, y=z$, then by $H 1$ we have

$$
\begin{equation*}
(x * y) * z \leq x * y \tag{3}
\end{equation*}
$$

By (3), H1 and (2) we have
(4)

$$
(x * y) * z \leq x
$$

which is axiom $B 1$.
Put $y=y * z, z=x * y$ in $H 2$, then, we have

$$
\begin{equation*}
(x *(y * z)) *(x * y) \leq(x *(x * y)) *(y * z) \tag{5}
\end{equation*}
$$

Let us put $x=x * z, y=y * z, z=x * y$ in $H 2$, then

$$
((x * z) *(y * z)) *(x * y) \leq((x * z) *(x * y)) *(y * z)
$$

The right side is equal to 0 by $H 3$, hence we have

$$
\begin{equation*}
(x * z) *(y * z) \leq x * y \tag{6}
\end{equation*}
$$

Let $x * y=0$, then by (6) we have
(7)

$$
x \leq y \text { imply } x * z \leq y * z .
$$

In [2], K. Iséki proves that H implies the followings:

$$
\begin{gather*}
x=\sim(\sim x), \tag{8}\\
x * y \leq(\sim y) *(\sim x) .
\end{gather*}
$$

By H5 and (8) we have

$$
\begin{equation*}
x *(x * y) \leq x *(\sim y) \tag{10}
\end{equation*}
$$

By (10) and (7) we have

$$
\begin{equation*}
(x *(x * y)) *(y * z) \leq(x *(\sim y)) *(y * z) \tag{11}
\end{equation*}
$$

By (9) and (8) we have

$$
\begin{equation*}
x *(\sim y) \leq y *(\sim x) \tag{12}
\end{equation*}
$$

By (12) and (7) we have

$$
\begin{equation*}
(x *(\sim y)) *(y * z) \leq(y *(\sim x)) *(y * z) \tag{13}
\end{equation*}
$$

Let us put $x=y, y=\sim x$ in $H 3$, then

$$
\begin{equation*}
(y *(\sim x)) *(y * z) \leq z *(\sim x) \tag{14}
\end{equation*}
$$

By (14), (12), and (2) we have

$$
\begin{equation*}
(y *(\sim x)) *(y * z) \leq x *(\sim z) \tag{15}
\end{equation*}
$$

By (5), (11), (13), (15), and (2) we have

$$
\begin{equation*}
(x *(y * z)) *(x * y) \leq x *(\sim z) \tag{16}
\end{equation*}
$$

which is axiom $B 3$.
Therefore we complete the proof of Lemma 1.
Lemma 2. $B \Rightarrow H$.
From $B 3$ and $B 2$ we have

$$
\begin{equation*}
(x * z) *(y * z) \leq(x * z) * y \tag{17}
\end{equation*}
$$

In (17), put $x=x * y, y=x$, then by $B 1$ we have

$$
\begin{equation*}
(x * y) * z \leq x * z \tag{18}
\end{equation*}
$$

By (18) and $B 2$ we have

$$
\begin{equation*}
(x * y) * z \leq \sim y \tag{19}
\end{equation*}
$$

In $B 3$ put $x=(x * y) * z, y=x * z, z=y$ then
$(((x * y) * z) *((x * z) * y)) *(((x * y) * z) *(x * z)) \leq((x * y) * z) *(\sim y)$.
The right side is equal to 0 by (19), and further the second term of the left side is 0 by (18), hence we have the following.

$$
\begin{equation*}
(x * y) * z \leq(x * z) * y \tag{20}
\end{equation*}
$$

which is axiom $H 2$.
In (20) put $x=x * y, y=x * z$, then by (18) we have

$$
\begin{equation*}
(x * y) *(x * z) \leq z . \tag{21}
\end{equation*}
$$

We substitute $(x * y) *(x * z)$ for x, z for y, y for z in $B 3$, then $(((x * y) *(x * z)) *(z * y)) *(((x * y) *(x * z) * z) \leq((x * y) *(x * z)) *(\sim y)$.
By the formula (19), the right side is equal to 0 , and by the formula above, the second term of the left side is 0 , hence we have H3

$$
\begin{equation*}
(x * y) *(x * z) \leq z * y \tag{22}
\end{equation*}
$$

If we substitute $\sim y$ for y, y for z in (20), then by $B 2$ we have H4

$$
\begin{equation*}
x *(\sim y) \leq y . \tag{23}
\end{equation*}
$$

In (20) put $x=x * z, y=(x * z) * y, z=y * z$, then

$$
((x * z) *((x * z) * y)) *(y * z) \leq((x * z) *(y * z)) *((x * z) * y)
$$

The right side is equal to 0 by (17), hence

$$
\begin{equation*}
(x * z) *((x * z) * y) \leq y * z . \tag{24}
\end{equation*}
$$

Next we substitute $z *(\sim y)$ for y, y for z, then by (23) we have

$$
\begin{equation*}
x * y \leq(x * y) *(z *(\sim y)) \tag{25}
\end{equation*}
$$

By $B 1$ we have the following relation

$$
\begin{equation*}
(x * y) *(z *(\sim y)) \leq x \tag{26}
\end{equation*}
$$

By (22) we have

$$
\begin{equation*}
x \leq y, y \leq z \text { imply } x \leq z \tag{27}
\end{equation*}
$$

By (25), (26), and (27) we have the following

$$
\begin{equation*}
x * y \leq x \tag{28}
\end{equation*}
$$

which is axiom $H 1$.
In (20) put $y=x$, then

$$
\begin{equation*}
x * x \leq z . \tag{29}
\end{equation*}
$$

By (29) and the definition of equality, we have

$$
\begin{equation*}
x * x=0 . \tag{30}
\end{equation*}
$$

In (20) if we put $x=x *(z * y), y=x *(\sim y), z=x * z$ and use $B 3$, then we have

$$
\begin{equation*}
(x *(z * y)) *(x *(\sim y)) \leq x * z \tag{31}
\end{equation*}
$$

By (31), (30) we have

$$
\begin{equation*}
x *(x * y) \leq x *(\sim y) \tag{32}
\end{equation*}
$$

In (32) put $x=x *(\sim(\sim x)), y=x$, then by (23), (28), we have

$$
\begin{equation*}
x \leq \sim(\sim x) \tag{33}
\end{equation*}
$$

If we substitute $x *(\sim y)$ for z in (22), then by (23) we have the following

$$
\begin{equation*}
x * y \leq x *(x *(\sim y)) \tag{34}
\end{equation*}
$$

Let us put $x=\sim(\sim x), y=\sim(\sim x), z=\sim x$ in $B 3$ then we have

$$
\begin{aligned}
((\sim(\sim x)) *((\sim(\sim x)) * & (\sim x))) *((\sim(\sim x)) *(\sim(\sim x))) \leq \\
& (\sim(\sim x)) *(\sim(\sim x)) .
\end{aligned}
$$

Here $(\sim(\sim x)) *(\sim(\sim x))=0$ by (30), then we have

$$
\begin{equation*}
\sim(\sim x) \leq(\sim(\sim x)) *(\sim x) \tag{35}
\end{equation*}
$$

In (34) put $x=\sim(\sim x), y=x$, then by the formula above we have

$$
\begin{equation*}
\sim(\sim x) \leq x \tag{36}
\end{equation*}
$$

By (33), (36) and the definition of equality, we have

$$
\begin{equation*}
x=\sim(\sim x) . \tag{37}
\end{equation*}
$$

In (32) if we put $y=\sim y$ and use (37) we have

$$
x *(x *(\sim y)) \leq x * y
$$

which completes the proof of $B \Rightarrow H$.
Hence we have the following
Theorem. Any B-algebra is characterized by the axiom system $B 1-B 4$.

References

[1] K. Iséki: Algebraic formulation of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).
[2] -: Axiom systems of B-algebra. Proc. Japan Acad., 41, 808-811 (1965).
[3] Y. Arai and K. Iséki: Axiom systems of B-algebra II. Proc. Japan Acad., 41, 908-910 (1965).
[4] K. Iséki: A characterization of Boolean algebra. Proc. Japan Acad., 41, 893-897 (1965).
[5] K. Tanaka: On axiom systems of propositional calculi. XI. Proc. Japan Acad., 41, 898-900 (1965).

