190. Axiom Systems of B-Algebra

By Corneliu SICOE

(Comm. by Kinjirô KUNUGI, M.J.A., Oct. 12, 1966)

In his note [1] Kiyoshi Iséki gave an algebraic formulation of propositional calculi and he defined *B*-algebra.

Other characterisations of *B*-algebra are given by K. Iséki, Y. Arai, and K. Tanaka (see [2]-[5]).

Let $\langle X, 0, *, \sim \rangle$ be an algebra where 0 is an element of a set X, * is a binary operation and \sim is an unary operation on X. We write $x \leq y$ for x * y = 0, and x = y for $x \leq y$ and $y \leq x$.

The axiom system of *B*-algebra is given by (see [2])

In this note we shall show that a *B*-algebra is characterized by the following axiom system.

B1. $(x*y)*z \leq x$, B2. $x * y \leq \sim y$, B3. $(x*(y*z))*(x*y) \le x*(\sim z),$ B4. $0 \leq x$. Lemma 1. $H \Rightarrow B$. In H2, put $z = \sim y$, then by H4, we have (1) $x * y \leq \sim y$, which is axiom B2. In H3, put x * z = z * y = 0, then $x \leq y, y \leq z$ imply $x \leq z$. (2)In H1, put x=x*y, y=z, then by H1 we have (3) $(x*y)*z \leq x*y$. By (3), H1 and (2) we have (4) $(x * y) * z \leq x$ which is axiom B1. Put y = y * z, z = x * y in H2, then, we have (5) $(x*(y*z))*(x*y) \le (x*(x*y))*(y*z).$ Let us put x = x * z, y = y * z, z = x * y in H2, then $((x*z)*(y*z))*(x*y) \le ((x*z)*(x*y))*(y*z).$ The right side is equal to 0 by H3, hence we have (6) $(x*z)*(y*z) \leq x*y$.

C. SICOE

Let x * y = 0, then by (6) we have (7) $x \leq y$ imply $x * z \leq y * z$. In $\lceil 2 \rceil$, K. Iséki proves that H implies the followings: (8) $x = \sim (\sim x)$. (9) $x * y \leq (\sim y) * (\sim x).$ By H5 and (8) we have (10) $x * (x * y) \leq x * (\sim y).$ By (10) and (7) we have (11) $(x * (x * y)) * (y * z) \le (x * (\sim y)) * (y * z).$ By (9) and (8) we have (12) $x * (\sim y) \leq y * (\sim x).$ By (12) and (7) we have $(x*(\sim y))*(y*z) \le (y*(\sim x))*(y*z).$ (13)Let us put $x=y, y=\sim x$ in H3, then (14) $(y*(\sim x))*(y*z) \leq z*(\sim x).$ By (14), (12), and (2) we have $(y*(\sim x))*(y*z) \le x*(\sim z).$ (15)By (5), (11), (13), (15), and (2) we have (16) $(x*(y*z))*(x*y) \leq x*(\sim z)$ which is axiom B3. Therefore we complete the proof of Lemma 1. Lemma 2. $B \Rightarrow H$. From B3 and B2 we have (17) $(x*z)*(y*z) \leq (x*z)*y.$ In (17), put x = x * y, y = x, then by B1 we have (18) $(x*y)*z \leq x*z$. By (18) and B2 we have (19) $(x * y) * z \leq \sim y$. In B3 put x = (x * y) * z, y = x * z, z = y then $(((x*y)*z)*((x*z)*y))*(((x*y)*z)*(x*z)) \le ((x*y)*z)*(\sim y).$ The right side is equal to 0 by (19), and further the second term of the left side is 0 by (18), hence we have the following. (20) $(x*y)*z \leq (x*z)*y$, which is axiom H2. In (20) put x = x * y, y = x * z, then by (18) we have (21) $(x*y)*(x*z) \leq z$. We substitute (x*y)*(x*z) for x, z for y, y for z in B3, then $(((x*y)*(x*z))*(z*y))*(((x*y)*(x*z)*z) \le ((x*y)*(x*z))*(\sim y).$ By the formula (19), the right side is equal to 0, and by the formula above, the second term of the left side is 0, hence we have H3

$$(22) \qquad (x*y)*(x*z) \leq z*y.$$

868

If we substitute $\sim y$ for y, y for z in (20), then by B2 we have H4(23) $x * (\sim y) \leq y$. In (20) put x = x * z, y = (x * z) * y, z = y * z, then $((x*z)*((x*z)*y))*(y*z) \le ((x*z)*(y*z))*((x*z)*y).$ The right side is equal to 0 by (17), hence (24) $(x*z)*((x*z)*y) \leq y*z.$ Next we substitute $z * (\sim y)$ for y, y for z, then by (23) we have $x * y \leq (x * y) * (z * (\sim y)).$ (25)By B1 we have the following relation $(x*y)*(z*(\sim y)) < x.$ (26)By (22) we have (27) $x \leq y, y \leq z$ imply $x \leq z$. By (25), (26), and (27) we have the following (28) $x * y \leq x$ which is axiom H1. In (20) put y = x, then (29) $x * x \leq z$. By (29) and the definition of equality, we have (30)x * x = 0. In (20) if we put x=x*(z*y), $y=x*(\sim y)$, z=x*z and use B3, then we have (31) $(x*(z*y))*(x*(\sim y)) \leq x*z.$ By (31), (30) we have (32) $x * (x * y) \le x * (\sim y).$ In (32) put $x = x * (\sim (\sim x)), y = x$, then by (23), (28), we have (33) $x \leq \sim (\sim x)$. If we substitute $x * (\sim y)$ for z in (22), then by (23) we have the following (34) $x * y \leq x * (x * (\sim y)).$ Let us put $x = \sim (\sim x)$, $y = \sim (\sim x)$, $z = \sim x$ in B3 then we have $((\sim(\sim x))*((\sim(\sim x))*(\sim x)))*((\sim(\sim x))*(\sim(\sim x))) \le$ $(\sim (\sim x)) * (\sim (\sim x)).$ Here $(\sim (\sim x)) * (\sim (\sim x)) = 0$ by (30), then we have (35) \sim (\sim x) \leq (\sim (\sim x))*(\sim x). In (34) put $x = \sim (\sim x)$, y = x, then by the formula above we have (36) \sim ($\sim x$) $\leq x$. By (33), (36) and the definition of equality, we have (37) $x = \sim (\sim x)$. In (32) if we put $y = \sim y$ and use (37) we have

(38) $x * (x * (\sim y)) \le x * y$. which completes the proof of $B \Rightarrow H$.

Hence we have the following

Theorem. Any B-algebra is characterized by the axiom system B1-B4.

References

- K. Iséki: Algebraic formulation of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).
- [2] ----: Axiom systems of B-algebra. Proc. Japan Acad., 41, 808-811 (1965).
- [3] Y. Arai and K. Iséki: Axiom systems of B-algebra II. Proc. Japan Acad., 41, 908-910 (1965).
- [4] K. Iséki: A characterization of Boolean algebra. Proc. Japan Acad., 41, 893-897 (1965).
- [5] K. Tanaka: On axiom systems of propositional calculi. XI. Proc. Japan Acad., 41, 898-900 (1965).

870