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1. Introduction. Let X be a topological space and {A} a
locally finite closed covering of X. As is well known, if each
subspace A has one of the following properties, then the whole
space X has also the same property (see, for instance, K. Morita
[4] and J. Nagata [8])"
(a) being a normal space, (b) being countably paracompact,
(c) being collectionwise normal, (d) being perfectly normal,
(e) being paracompact and normal, (f) being metrizable.
Recently, K. Morita [7] has introduced the notion of M-spaces. He
calls a topological space X an M-space if there exists a normal
sequence {11, n- 1, 2, of open coverings of X satisfying the
condition (*) below"

(*) If a family consisting of a countable number of subsets
of X has the finite intersection property and containing as
its member a subset of St(0, ll,) for each n and for some
fixed point x0 in X, then f-l{KI K e }=/: .

In this note, we shall establish an analogous result for the notion
of M-spaces; namely, we shall prove the following theorem:

Theorem 1. Let {As} be a locally finite covering of a

Hausdorff space X and each As be a closed G-subset of X. If
each A is a normal M-space with respect to its relative topology,
then the whole space X is also a normal M-space.

The next 2 is devoted to the proof of this theorem, and in 3
we shall deduce some of its immediate consequences. Most
terminologies and notations used in this note are the same as those
of J. W. Tukey [12].

Finally, I wish to express my hearty thanks to Prof. K. Morita
who has given me many kindful suggestions and advices.

2. Proof of Theorem 1. Our proof of Theorem 1 rests upon
the following two lemmas.

Lemma 1. Let {(R) In-l, 2, ...} be a normal sequence of open
coverings of a topological space X. Then there is another normal
sequence {Fj In-1, 2,...} of open coverings of X having the prop-
erties"

(i) Each is a refinement of (R).
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(ii) Each . is locally finite.
Lemma 2. Let {F a e 9} be a family of closed subsets in a

space X and for each ef2, let 6 be a locally finite family of
open subsets in X such that F,H, where H=
Denote by (R)6 the open covering of X consisting of the set X-F
and the sets in (R). If the family {H, v e g} is locally finite,
then the family A {(R)6 I e I2}1 is a locally finite open covering of
X.

Lemma 1 is an easy consequence of Theorem 1.2 in F5 and the
proof of Lemma 2 is similar to that of Theorem 1.2 in [3.

Now we proceed to prove Theorem 1. Let {Ale2} be a
locally finite closed covering of a Hausdorff space X and suppose
that each A is a normal M-space with respect to its relative topology.
According to a result of A. 0kuyama [10, each A is collectionwise
normal and countably paracompact, and hence the whole space X is
also collectionwise normal and countably paracompact (see K. Morita
F4). Consequently, from a theorem of M. Kattov 2 we see that
there exists a locally finite open family {Hla e I2} of open subsets
of X such that HA for each a e t9 (see also V. Sediv [11).
Considering the G-property of A, we can find a countable family

{G)]n-1,2,...} of open subsets of X such that FIG)-A and
that G)H and GG for each n.

Since each A is an M-space, there exists a normal sequence
{lI)ln-1 2,...} of open coverings of the subspace A satisfying
the condition (*) with respect to the subspace A. Moreover, we
can assume that each covering 1I) is locally finite in A by Lemma
1. Applying a theorem of C. H. Dowker [1 to this covering, we
obtain a locally finite open covering ) of X such that i)FA)

is a refinement of 1I). Denote by 0.) the open covering of the
space X formed by X-A and the sets of the form G) FM, where
Me ), and construct the covering
i A{ - e 9}-, (n- i, 2, ...).

Then we see from Lemma 2 that is a locally finite open covering
of the space X.

Now we shall construct by induction a normal sequence {} of
open coverings of X in the following way. First, we put =.
Let n> 1 and suppose that the locally finite open coverings (i 1, 2,.., n-1) have been defined in such a way that (i) 3 is a refinement
of 9l, and (ii) 3 is a star-refinement of _. Since 3_ is a locally
finite open covering of the normal space X, it has a locally finite open

1) As to this notation, see J. W. Tukey [12].
2) Here (61F A6 means a family {MF
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star-refinement 3.. Let A3-3.. Then the above relations (i)
and (ii) are also valid for i-n.

This sequence {3} is obviously a normal sequence of open
coverings of X. It remains to prove that the sequence {} satisfies
the M-space condition (*). To prove this, let -{Kln-1, 2,...}
be any family consisting of a countable number of subsets of X
having the finite intersection property and suppose that contains
as its member a subset K of St(xo, 3) for every i and for some
fixed point Xo of X. We have to show {Ke}. Let
A(Xo)-{a e 9Xo e H.} and 2o(Xo)-{a e 9]Xo e A}. Then the index-sets
A(Xo) and Ao(Xo) are finite subsets of 9 by virtue of local finiteness
of the family {H.a e 9}, and the set Ao(Xo) is contained in 2(Xo).

First, we shall prove that for every i we have:
( 2 St(xo,)St(xo,) {A a e A(Xo)}.
Indeed, let N be any member of containing the point Xo. The
set N has the form
3 N- N{X--A, a e n n e

where U is some set belonging to "), and 9 and 9 are disjoint
subsets of 9 such that 9 U 9-9. If is any index not contained
in Z(Xo), then must be contained in 9, whence we have NX-A.
Since this relation holds for any e 2(Xo), it follows that
N N {X-A e (Xo)} X- U {A e (Xo)} U {A a e 2(Xo)}.

Hence the relation (2) is proved.
Next, we shall show that there is some integer io such that

i io implies
( 4 St(xo,) U{A ]a e 2o(Xo)}.
Indeed, in case 2(Xo)-2o(Xo), we have only to choose io-1. Otherwise,
we choose any e 2(Xo)-2o(Xo). Then Xo e A and hence Xo e G) for
some i-i(). Therefore, for any ji(), we have

St(xo, )St(xo, ()St(xo
Consequently, if we choose io-Max {i() ] e 2(Xo)-2o(Xo)}, we see
that the relation (4) is valid for this io.

Finally, we shall prove that the family A has the finite
intersection property for some aoe2o(Xo). Let us assume the
contrary. Then for each a e 2o(Xo), we can find a finite set F of
natural numbers such that {KA]ieF}-. Let F
{F e 2o(Xo)}. Then we have from (4),

Ko {K i e F})-Ko {A. ]a e 2o(Xo)}) {K i e

This contradicts the finite intersection property of the family .
Hence, for some ao e do(Xo), the family NA has the finite inter-
section property, and furthermore, for every iio, we have
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K A St(xo, 3) A St(xo, 923 A
St(xo _.o St(xo,o,--- )A0c .A
c8t(0, 0),

because x0 A0. 8inee the subspaee A is an M-space, we have

{KAoAo[ Ke},
whence we infer that {K}. Thus, the proof of Theorem
1 is completed.

The problem whether Theorem 1 is valid without the Ga-eondi-
tion of A. remains open.

3. Some applications. Finally, we shall deduce some results
from Theorem .

Theorem 2. Let X be a paracompact Hausdorff space which
is locally an M-space, i.e., each point x in X has a neighborhood
U, such that U, is an M-space. Then the space X itself is an
M-space.

Proof. By paraeompaetness of the spaee X, the open covering
{Int U,x X} has a locally finite open refinement {G, }, whieh
also has an open refinement {H ] 9} such that GDH, for each

9. By normality of the spaee X, we can find closed G-subsets
A such that HcAcG for each . Then each A. is a closed
subspaee of some M-space U, and henee is an M-spaee and moreover,
a normal space. Thus, the theorem follows from the above Theorem 1.

Theorem 3. Let {G,} be a a-locally finite covering of a normal
Hausdorff space X and suppose that each G, is an open Fo-subset
of X. If each G. is an M-space, then so also is X.

Proof. According to K. Morita [7, Theorem 1.2], {G} is a
normal covering of X and hence has a loeally finite refinement.
Therefore, by the similar method as above, we can find a locally
finite refinement {Fa} of {G.} such that eaeh F is a closed G-subset
of X. Thus, the theorem is an immediate eonsequenee of Theorem .

Theorem 4 (J. Nagata and Yu. Smirnov). Let {A} be a locally
finite closed covering of a topological space X. If each A is
metrizable, then so also is X.

Proof. Sinee each A is paraeompaet and perfectly normal,
from [4] we see that X is also paraeompaet and perfectly normal.
Consequently, X is an M-space by Theorem 1. On the other hand,
the product space Xx X is perfectly normal because it is a union
of the loeally finite family of metrizable and henee perfectly normal
subspaees A x A. Applying A. Okuyama’s metrization theorem [9],
we eonelude that X is metrizable.

Theorem 5. Let {A In-l, 2, ...} be a countable family of
closed subsets of a space X having the property:
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(**) [J{Int A n-l, 2, ...}-X.
If each As is a normal M-space, then so also is X.

Proof. Let C-A and C-A-J IntA for n>l. It is clear

that {C In-l, 2, ...} is a locally finite closed covering of X and
that each C is a normal M-space and hence a countably paracompact
space (see [7). Therefore X is also countably paracompact and
normal (cf. 4) and consequently, we can find a locally finite family
{D} such that CDIntA and each D is a closed G-subset of
X. Thus this theorem also follows from Theorem 1.

If we drop the condition (**) in Theorem 5, the theorem fails
to hold. There exists a non-M-space which is a countable union of
closed M-subspaces; for instance, any non-metrizable C W-complex is
such a space (see Morita [6).

Corollary 1. If, in the above Theorem 5, each As is metrizable,
then so also is the space X.

The proof is similar to the above; we use Theorem 4 instead
of Theorem 1.

Corollar 2. Let A be an open F-subset of a normal
Hausdorff M-space X. Then A is also a normal M-space.

Proof. Let A-F, where each A is a closed subset of X.
Then we can easily find closed subsets C in such a way that

FInt CCA.
From this we have A-[2 IntC, and the theorem follows from

Theorem 5.
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