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Introduction. It is stated in [1] that if the operator L = — 4+ q(%),
where 4 is 3-dimension Laplacian and q(x) is sufficiently differentiable
real-valued function with compact support in 3-dimension Euclidean
space R? has no eigenvalue, then solution u(x) of equation Lu= —2*u
where 1 is a complex number satisfying Rei=0 equals to zero
identically if u(x) is a twice continuously differentiable function and
also w(x)=0(|z|™) as |®|—oo.

In §1 we give an example such that L has no eigenvalue, but
that for 2=0, Lu=2u has a solution, not zero identically which is
not an eigenfunction, but u(x)=0(| z|™*) as |®|—oo, where q(x) has
a compact support and for any positive number e

—q(x)= (1 E>‘1‘2

and also there exist some 7, 7, (O<r1<r2< o) and for |z |,

—q()£4[ o

From this example, we can construct a solution of wave equation

such that gu —Au+qu=0 for ¢>0, its initial data (0, ) and (0 x)

have compact supports resprectively, but that lim u(t, ) does not
t—oo
vanish for any x e R®.

Our considerations of the method were suggested by those of
the method used in [2]. Next we give its proof in § 2, and consider

the influence which }1 | 1l2 has on the spectrum of L in § 3.

§1. We consider a differential operator L= —4-+q(x) defined
on R: where ¢(x) is a twice continuously differentiable real-valued
function and also ¢q(x)=0(|z|*") (h>0) as |x|—oco. On this case
L has a unique self-adjoint extension on L*R? and its domain is
the set of all functions whose partial derivatives of order<2 in
distribution sense belong to L*R?). We also denote the extended
operator by L. Furthermore we write |x|=7r.

Example 1. We set
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—K for 0=r<r,,
q(x)= —(%-l—e)% for r,<r=<nr,,
0 for r>7,,
and
sin kr for 0r<r,,
w(r)={crtsin (v ¢ log r) for r,<r,<r,
¢, for r>r,,

where ¢ is an arbitrary positive number, and k, »,, r,, ¢,, ¢, will be
determined later such that w(r) is positive on (0, o) and continuously
differentiable on (0, o). Next we set
w(x)=r""w(r)
and also we write
(@) =u*ps(),
q(@)= (qu;()*¢s(x)
w* ps()

’

where

pi@)=379( L),

@(r) € C=([0, 0)),
@o(r)=0 for re [0, o),
p(r)=0 for r=1,
p(r)=1 for 0=r=<4%,

[ otrde=1,

and ¢ is a sufficiently small positive number. Then u*p,(x)=#0, so
#(x) e C°(R?), §(x) € C*(R®) and #% satisfies an equation — 4%+ qit=0,
and also rii—c, as r—oo, But ¢,>0, so %(x) does not belong to
LR,
Now we divide ¢(x) into ¢(x)=¢.(%)—q_(%), ¢:(2) =0, ¢_(x)=0.
Here to explain our significance of Example 1, we give two
lemmas.

Lemma 1, Let q_(x)g% —1; Then the solution wu(x) of the
r

equation Lu=0 equals to zero identically if for some >0, u=O0(r3-*)
and g;‘ —O(r3-, (i=1, 2, 3) as r—oco.

Lemma 2. Let q(x) be a function which satisfies the following
properties:

i) q@)=q(r),

ii) there exists a number r.(>0) such that q(r)=0 for r=r,

iif) q_§<z+i>%.
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Furthermore let Lu=0 have a solution u such that u=u(r)>0 on
(0, c0), then the operator L has mo etgenvalue.
§ 2. 1. The construction of w and of in Example 1. We at
first choose 7, such that 0<»,<1 and w'(»,)=0, that is,
tan(1 ¢ logr)=—21"¢.

Next we choose k, 7, ¢; such that

k>0,

0<7'1<7.2y

sin kr,=c,r¢ sin (V¢ log r,),

kcoskr,=cri3{4 sin(v ¢ logr)+1 ¢ cos (1 ¢ log 1)},

BR=G+ol,
71

and ¢, sin (V' ¢ log r)>0 for re[r, r,].
Furthermore we set
e=crisin(V e logr,)  (>0).

Then q(r) and w(r) described in §1 satisfy the relation

w"(r)=q(r)w(r).
We now set

w(x) =r""w(r),

then u(x)>0 and ru(x)—c¢, as r—oo, From the above relation we
see that —Ju+qu=0, but that u ¢ L*(R?).

2. Proof of Lemma 1. It is well known that if u(x) e C3(R®),
and u(x)=0(r—%-°), gz =0(r%) (i=1, 2, 3),6>0, as r—oo, we then
have the following inequality:

[ L@ g

R4 9 =
Both sides are equal if and only if u(x)=0. Now we prove Lemma
1. If w(x)=#£0, then from the assumption

grad u(x) [*dx.

R3|

0= SRg( — du+ qu)udx
— §R3(| grad u [*+q | u [?)da

> Sﬂs<ﬁ—q_> |u [*de =0,

which is a contradiction.

3. Proof of Lemma 2. Since for 1>0, this lemma is proved
in T. Kato [3], we may investigate this lemma when 2<0. We
replace the equation —4du+qu=2u by polar coordinate (r,§), then
this equation becomes

o , 2 ou  Au
40U AU 0 V=0
ort + P 8r+ 72 Ta=gu=0,
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where A is Laplace-Beltrami operator. We now define w(r,8)
=ru(r, §), then w(r, ) satisfies
2,
oW 4 AV 4 - gw=0.
or? r

By ®..,.(0) we denote normalized n-th spherical harmonies, then w(r, 6)
is expanded such that

wir, )= w(r, 0)pnO)d0- 9.0 (0),

161

and its coefficient v”,m(r)zgo w(r, p,,.(0)d0 satisfies the equation
161=1

o)+ (1—q =D Yo, =0,
r

We at first show that w,,,.(r)=0 for n=1., If »,,%0, from
u(x) e LR, Tf;‘— e LX(RY), (i=1, 2, 3)

O = S”{v;:,m+ (2_ q— _%(4%;]— 1) )vnym}/ﬁn»md/"
0 r

= {ionnr+ (=20 MDY o ey
0 r

> S:{(iJrZ)%—(Hq_)} | Dy [{dr 20,

This is a contradiction.

Next we show that v,(r)=0. From the preceding fact

vy =(¢+q)v, (1)

where we write 1= —p (#=0).

When p=0, from (1) we get

v(r)=v(0, r)=ar+b for r=r,.
From this and »(0, r) e L*(R"), we see that
(0, r)=0 for r=7,

and accordingly that »(0, »)=0.

Now denoting the solution v, of the equation v§=(q+ t)v, by
vy, r), we set

w(p, 7)= (e, ) sin 6z, 7),

v'(pe, r)=p(t, ) cos O(x, 1), (2)
o(e, 7)=1{o(ge, 1)+ (e, )R,
and
0z, 0)=0., (3)
From (1) and (2), we get
p’(ﬂy ,,»)_:(14_(#_{_(1))‘0(#, ) sin oy, 7) cos oee, 1), (4)
0'(¢t, r)=cos O(pt, r)— (¢ +q) sin® 6(x¢, r) (5)

for all r=0.
Solving (1) for r=r,, we get
v(pe, r)=aerr+be-"er, (6)
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Because of ue L*(R?), a=0., Therefore v(y, ry=be-"¢¥r for r=r,,
Assuming b+#0 for some ¢>0, from (2), (4), (6), we get

sin 20(u, r)= —2%_'/_—% for r=7r,.

Accordingly for some integer k&

o(pe, ) € (k+ %), (k+ 1)), (7)
and for r=r, 6(u, r) is constant. Hence from (5)
p=cot® (y, r), for r=vr,. (8)

Here we remark from (5), (8) that even if there exists an
eigenfunction whose 6(y, r) is in ((k+3%)x, (k+1)7) for r=r, it is
determined by a unique .

Now we assume that there exists a positive solution (0, 7).

Setting v(0, r)=ar+b for r=r,, we see that % sin 26(0, 7'):%—-»0 as

r—oco, hence that 6(0, r)—»l%r as r—oo, Furthermore it implies

from the positiveness of v(0,r) that sin#(0, )0, that is,
0=6(0, r)==m. Moreover from (5), we see that

0=6(0, ?)g—% for r e (r,, ). (9)

If >0, from (3), (5), and (9)
0=0(p, r)=6(0, r) for all r>0.

that is, for »>0, u>0, 6(x, r)e[O, %], which is a contradiction

with (7).

Finally we remark that if 6(0,r) tends to (k+3%)r, as r—oo,
then from (8) the operator L has just k-eigenvalues with simple
multiplicity.

§ 3. Remark. For the dimension =3, there exists at
least one operator L which has eigenvalues even if ¢ satisfies

q_g(}+s)l2, where ¢ is an arbitrary positive number,
r

Example 2. We set

—k2—=2 for 0=<r<r,
q(r)= ——(:l;—l-ﬁ)}l-z—l for r<r=nr,,
0 for r>r,,
and
sin kr for 0=r<r,
w(r)={rtsin (15 log r) for r.<r=<r,
e~ Yxr for r>7r,,

where ¢ is a fixed number such that 0<3§—82-, and we choose k, 7,
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such that
k>0,
7, >0,
sin kr,=r%sin /6 log r,),

k cot kr,= l{V?(cot Vv §log 7))+ %},
7y

in addition & is sufficiently smaller than (:1~+e)%. Next we choose
71

A, r, such that
<1y

0<2=—2
< 212

r¥sin (/5 log ry) =e-vxn,
and %{1/ 6 cot (V' 6 log )+ %} =—1V'2.

Then q(r) and w(r) mentioned above, satisfy the relation
w"(r)=(q+)w(r).
We next set u(x)=r""w(r), then
Lu=2w, and also ue L*(R®.
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