221. On Branching Semi-Groups. I

By Nobuyuki IKEDA, Masao NAGASAWA, and Shinzo WATANABE

Osaka University, Tokyo Institute of Technology, and Kyoto University*)

(Comm. by Kinjirô KUNUGI, M.J.A., Nov. 12, 1966)

In the previous papers we have given a definition of branching Markov processes (abbreviated as B.M.P.) [1], discussed some fundamental equations of B.M.P. [2], and constructed B.M.P. in a probabilistic way [3], [4]. This paper is a continuation of these papers and is devoted to an analytic construction of B.M.P. We shall treat this problem, however, in a little wider setup which may permit us to deal with the not necessarily positive branching semigroups. (c.f. [5]).

1. Definition of branching semi-groups. Let S be a compact Hausdorff space with countable base, S^n be the *n*-fold symmetric product of S ($S^0 = \{\partial\}$, an isolated point), and $S = \bigcup_{n=0}^{\infty} S^n \cup \{\Delta\}$ be the one-point compactification of $\bigcup_{n=0}^{\infty} S^n$.¹⁾ We denote by C(S) (resp. C(S)and $C(S^n)$) the space of bounded continuous functions on S (resp. on S and S^n). B(S) is the space of bounded Borel measurable functions on S. $C_0(S)$ (resp. $B_0(S)$) is the subspace of C(S) (resp. B(S)) the elements of which vanish at infinity Δ .

Definition 1.1. A contraction² semi-group $\{T_i; t \ge 0\}$ of linear operators on C(S) (or B(S)) is said to be a branching semi-group (or of branching property), if it satisfies

(1.1) $T_t \widehat{f}(\mathbf{x}) = (\widehat{T_t \widehat{f}}|_S(\mathbf{x}), \quad \mathbf{x} \in S,^{3})$ for any $f \in \overline{C}^*(S)$ (or $\overline{B}^*(S)$).⁴

Remark. Let **B** be a Banach space or Hilbert space, $B^n = B \otimes B \otimes \cdots \otimes B$ be the *n*-fold symmetric direct product of **B**, and $\mathscr{D} = \sum_{n=0}^{\infty} \oplus B^n$ ($B^0 = \{\text{constants}\}$) be the direct sum of B^n . Then the notion of branching semi-groups can be extended to a semi-group of linear operators on \mathscr{D} .

*) The authors' present addresses: Stanford Univ., Cornell Univ., and Univ. of Washington.

1) For precise definition of S, we refer to [1].

2) i.e. $||T_t|| \leq 1$. We do not assume positivity of T_t .

3) For $f \in \overline{B}^*(S)$, we put $\hat{f}(x) = \prod_{i=1}^n f(x_i)$ if $x \in S^n$, =0 if $x = \Delta$, and =1 if $x = \partial$.

4) $C^*(S)$ $(B^*(S)) = \{f; f \text{ is bounded continuous (resp. Borel measurable) with } ||f|| < 1\}$. $\overline{C}^*(S)$ $(\overline{B}^*(S))$ is the uniform closure of $C^*(S)$ $(B^*(S))$.

No. 9]

2. *M*-equation. We assume that we are given a system $\{T_t^0, K(t), \mu_n\}$ of quantities satisfying the following conditions:

[P. 1] There is a kernel⁵⁾ $T^{0}(t, x, dy)$ on $[0, \infty) \times S \times S$, and if we put

(2.1)
$$T^{0}_{t}f(x) = \int_{S} T^{0}(t, x, dy)f(y), \text{ for } x \in S \text{ and } f \in C(S),$$

then T_t^0 is a strongly continuous contraction semi-group of linear operators on C(S).

[P. 2] There is a kernel⁶⁾ K(x, dr, dy) on $S \times [0, \infty) \times S$, and if we put

(2.2)
$$K(t)f(x) = \int_0^t \int_S K(x, dr, dy)f(y), \quad \text{for } x \in S \text{ and } f \in C(S),$$

then K(t) is a bounded linear operator on C(S). Moreover T_t^0 and K(t) have the following relations; for any s and $t \ge 0$,

(2.3)
$$T_t^0 K(s) f(x) = K(t+s) f(x), \quad x \in S$$

and if we denote the total variations of $T^{\circ}(t, x, dy)$ and K(t, dr, dy)by $|T^{\circ}|(t, x, dy)$ and |K|(x, dr, dy), respectively, they satisfy

(2.4)
$$|T^{\circ}|(t, x, S) - |T^{\circ}|(s, x, S) + \int_{s}^{t} |K|(x, dr, S) \leq 0$$
, for $s \leq t$, and
(2.5) $\lim_{t \downarrow 0} \sup_{x \in S} |K|(x, [0, t], S) = 0.$

[P. 3] There are kernels $\mu_n(x, dy)$ on $S \times S^n$, $n = 0, 1, 2, \dots, +\infty, 7$ and if we put

(2.6)
$$\mu_n[f](x) = \int_{S^n} \mu_n(x, d\boldsymbol{y}) f(\boldsymbol{y}), \quad x \in S \text{ and } f \in C(S^n),$$

then μ_n is a bounded linear operator from $C(S^n)$ to C(S) and satisfies (2.7) $\sum_{n=0}^{\infty} |\mu_n| (x, S^n) \leq 1,$

Where convergence is uniform in x.

By virtue of Lemma 2.2 of [2], we have

Lemma 2.1. There exist unique kernels $T^{0}(t, x, dy)$ and $\Psi(t, x, dy)$ on $[0, \infty] \times S \times S$ such that:

1°) If $\mathbf{x} \in S^n$, T°($t, \mathbf{x}, .$) is concentrated on S^n , and if we put for $f \in C(S^n)$

(2.8)
$$\boldsymbol{T}_{t}^{0}f(\boldsymbol{x}) = \int_{\boldsymbol{S}^{n}} T^{0}(t, \boldsymbol{x}, d\boldsymbol{y}) f(\boldsymbol{y}), \quad \boldsymbol{x} \in S^{n},$$

then T_t^0 is a strongly continuous semi-group on $C(S^n)$ and satisfies $\widehat{T_t^0f}(x) = \widehat{T_t^0f}(x), \quad for \ f \in C(S), \ x \in S^n, n = 1, 2, \cdots,$

7) $S^0 = \{\partial\}$ and $S^{\infty} = \{\Delta\}$.

⁵⁾ For fixed $x \in S$ and $t \ge 0$, $T^{0}(t, x, .)$ is a signed measure on S with bounded total variation, and for any fixed Borel set $B \subseteq S$, $T^{0}(., ., B)$ is Borel measurable on $[0, \infty) \times S$.

⁶⁾ For fixed $x \in S$, K(x, ., .) is a signed measure on $[0, \infty) \times S$ with bounded total variation, and for a fixed Borel set $B_1 \times B_2$ of $[0, \infty) \times S$, $K(., B_1, B_2)$ is Borel measurable on S.

N. IKEDA, M. NAGASAWA, and S. WATANABE

(2.9)
$$\begin{aligned} \boldsymbol{T}_{t}^{0}f(\partial) = f(\partial), & \text{for } f \in \boldsymbol{C}(S^{0}), \\ \boldsymbol{T}_{t}^{0}f(\Delta) = f(\Delta), & \text{for } f \in \boldsymbol{C}(\{\Delta\}), \end{aligned}$$

and

1018

(2.10) $| T_t^0 | (t, x, S^n) \leq 1, \quad \text{if } x \in S^n.$

 2°) If we put

(2.11)
$$\Psi(t)f(\boldsymbol{x}) = \int_{\boldsymbol{S}} \Psi(t, \boldsymbol{x}, d\boldsymbol{y})f(\boldsymbol{y}), \quad f \in C_0(\boldsymbol{S}), \quad \boldsymbol{x} \in S^n,$$

then $\Psi(t)$ is a bounded linear operator from $C_0(S)$ to $C(S^n)$ and satisfies

(2.12)
$$\Psi(t)f(\boldsymbol{x}) = \int_0^t \langle \boldsymbol{T}_r^0 \hat{f} |_{\mathcal{S}} \left| \int_{\mathcal{S}} K(\cdot, dr, dy) \sum_{n=0}^\infty \mu_n [\hat{f}](y) \rangle(\boldsymbol{x}),^{s} \boldsymbol{x} \in \boldsymbol{S},$$
where $f \in C^*(S)$.

3°) Let $|\Psi|(t, \mathbf{x}, d\mathbf{y})$ be the total variation of Ψ , then $|\Psi|(\cdot, \mathbf{x}, S)$ is of bounded variation as a function of t, and it holds that (2.13) $|\Psi|(t, \mathbf{x}, S) \leq 1 - |T^{\circ}|(t, \mathbf{x}, S), \mathbf{x} \in S,$ and

(2.14)
$$\lim_{t\downarrow 0} \sup_{\mathbf{x}\in S^n} |\Psi|(t, \mathbf{x}, S) = 0, \qquad n \ge 0.$$

Definition 2.1. Let T_t^0 and Ψ be those given in Lemma 2.1. Consider an equation on S, for $f \in B_0(S)$,

(2.16)
$$u_t(\boldsymbol{x}) = T_t^0 f(\boldsymbol{x}) + \int_0^t \int_S \Psi(dr, \boldsymbol{x}, d\boldsymbol{y}) u_{t-r}(\boldsymbol{y}), \quad \boldsymbol{x} \in S,$$

and we call it *M*-equation corresponding to $\{T_t^0, K, \mu_n\}$. If $u_t(x)$ satisfies *M*-equation for $f \in C_0(S)$ then

(2.17) $\lim_{t \downarrow 0} u_t(\boldsymbol{x}) = f(\boldsymbol{x}), \quad \boldsymbol{x} \in \boldsymbol{S},$

and u_t is called the solution of M-equation with the initial value f.

3. The minimal solution of *M*-equation. Now we construct a solution of *M*-equation. The procedure adopted by Moyal in [6] is applicable for our case. Namely, if we put for $x \in S, t \ge 0$, and $f \in B_0(S)$

(3.1)
$$\begin{cases} \Psi^{(0)}(t)f(\boldsymbol{x}) = f(\boldsymbol{x}), \ \Psi^{(1)}(t)f(\boldsymbol{x}) = \Psi(t)f(\boldsymbol{x}), \text{ and} \\ \Psi^{(n)}(t)f(\boldsymbol{x}) = \int_{0}^{t} \Psi^{(n-1)}(dr)\Psi(t-r)f(\boldsymbol{x}), \text{ for } n \geq 2, \end{cases}$$

and put

(3.2)
$$\begin{cases} \boldsymbol{T}_{t}^{(0)}f(\boldsymbol{x}) = \boldsymbol{T}_{t}^{0}f(\boldsymbol{x}), \\ \boldsymbol{T}_{t}^{(n)}f(\boldsymbol{x}) = \int_{0}^{t} \boldsymbol{\Psi}^{(n)}(dr) \boldsymbol{T}_{t-r}^{(0)}f(\boldsymbol{x}), & \text{for} \end{cases}$$

then we have

8) For $f \in B^*(S)$ and $g \in B(S)$, we put $\langle f/g \rangle \langle x \rangle = \sum_{k=1}^n g(x_k) \prod_{j \neq k} f(x_j)$ if $x \in S^n$, and =0 if $x = \partial$ or Δ .

 $n \geq 1$.

9) For convenience, we write $\Psi(dt)f(x)$ rather than $d\Psi(t)f(x)$.

[Vol. 42,

Lemma 3.1. $T_t^{(n)}$ and $\Psi^{(n)}(t)$ satisfy for $\mathbf{x} \in \mathbf{S}$ and $f \in B_0(\mathbf{S})$ (3.3) $\Psi^{(n)}(t)f(\mathbf{x}) = \int_0^t \Psi^{(n-k)}(dr)\Psi^{(k)}(t-r)f(\mathbf{x}), \text{ for } k=0, 1, 2, \cdots, n,$ (3.4) $T_t^{(n)}f(\mathbf{x}) = \int_0^t \Psi^{(n-k)}T_{t-r}^{(k)}f(\mathbf{x}), \text{ for } k=0, 1, 2, \cdots, n,$

(3.5)
$$T_{r}^{(0)}T_{t-r}^{(n)}f(\mathbf{x}) = \int_{r}^{t} \Psi(ds) T_{t-s}^{(n-1)}f(\mathbf{x}),$$

$$(3.6) \qquad \Psi^{(n)}(t)f(\boldsymbol{x}) = \Psi^{(n)}(s)f(\boldsymbol{x}) + \sum_{j=1}^{n} \boldsymbol{T}_{s}^{(n-j)} \Psi^{(j)}(t-s)f(\boldsymbol{x}), \qquad n \ge 1$$

Lemma 3.2. For any $f \in B_0(S)$, (3.7) $\sum_{n=0}^{N} T_t^{(n)} f(x)$

converges absolutely when N tends to infinity.

Lemma 3.3. There exists a kernel T(t, x, dy) on $[0, \infty) \times S \times S$ such that

(i) if we put

(3.8)
$$T_t f(\boldsymbol{x}) = \int_{\boldsymbol{S}} T(t, \boldsymbol{x}, d\boldsymbol{y}) f(\boldsymbol{y}), \quad for \quad f \in \boldsymbol{B}_0(\boldsymbol{S}),$$

then it holds that

(3.9)
$$T_t f(\mathbf{x}) = \sum_{n=0}^{\infty} T_t^{(n)} f(\mathbf{x}), \quad and$$
(3.10)
$$|| T_t || \leq 1.$$

(ii) T(t, x, dy) satisfies Chapman-Kolmogorov's equation. (iii) If we put $u_t(x) = T_t f(x)$ for $f \in C_0(S)$, then u_t is a solution of M-equation with the initial value f and it satisfies (3.11) $\lim ||T_t f - f|| = 0.$

Lemma 3.4. The semi-group T_t defined by (3.8) is a branching semi-group.

Proof of this lemma heavily leans upon the results of [1]. Combining the above lemmas, we have

Theorem 3.1. Let $\{T_i^0, K(t), \mu_n\}$ satisfying [P. 1], [P. 2], and [P. 3] be given, then there exists a kernel T(t, x, dy) on $[0, \infty) \times S \times S$, and if we define T_t by (3.8), it satisfies:

(i) T_t is a branching semi-group on $B_0(S)$ satisfying (3.9) and (3.10).

(ii) T_t is strongly continuous at t=0, for $f \in C_0(S)$.

(iii) $u_t(\mathbf{x}) = \mathbf{T}_t f(\mathbf{x})$ is a solution of M-equation corresponding to $\{T_t^0, K(t), \mu_n\}$ with the initial value f, provided that $f \in \mathbf{C}_0(\mathbf{S})$.

(iv) If T_t^0 , K(t) and μ_n are non-negative, then T_t is also non-negative.

(v) If, for any bounded Borel measurable function v(t, x) on $[0, \infty) \times S$, we have

(3.12)
$$\int_{0}^{t} \int_{S} K(\cdot, dr, dy) v(t-r, y) \in C(S),$$

then, T_t is a strongly continuous semi-group on $C_0(S)$.

Now we give a condition under which the solution of M-equation becomes unique.

Proposition 3.1. If Ψ satisfies, for any T>0, (3.13) $\sup_{\substack{t \leq T \ x \in S^n}} |\Psi|(t, x, S) < 1$, for $n=1, 2, \cdots$, then the bounded solution u(t, x) of M-equation with (3.14) $\limsup_{\substack{x \to d \ t \leq T}} |u(t, x)| = 0$

is unique.

Corollary. Assume that (3.13) is satisfied. If there exists a branching semi-group T_t satisfying M-equation and if it satisfies for $f \in C^*(S)$ and T > 0,

 $\sup_{t\leq T}\sup_{x\in S}\mid T_t\widehat{f}(x)\mid <1,$

then T_t coincides with the semigroup T_t obtained in Theorem 2.1. Remark. If inf inf $|T^0|(t, x, S) > 0$, (3.13) is satisfied.

As a concequence of Theorem 3.1, we are able to construct a branching Markov process corresponding to a fundamental system $\{T_t^0, K, q_n, \pi_n\}^{(0)}$

Remark. Put $\sigma_{\infty}(t, \mathbf{x}) = \lim_{n \to \infty} \Psi^{(n)}(t, \mathbf{x}, \mathbf{S})$. Moyal proved in [6] that the bounded solution of \mathcal{M} -equation corresponding to a fundamental system is unique if and only if $\sigma_{\infty}(\infty, \mathbf{x})=0$, for every $\mathbf{x} \in \mathbf{S}$. The probabilistic meaning of this condition is obvious. For, $\sigma_{\infty}(\infty, \mathbf{x}) = P_{\mathbf{x}}[0 \leq \tau_{\infty} < \infty]$. If $P_{\mathbf{x}}[0 \leq \tau_{\infty} < \infty] > 0$, there may appear many solutions of \mathcal{M} -equation which correspond to "branching Markov processes with instantaneous return" from some "boundary" of B.M.P. They may be constructed in the same way as [3] by giving some "instantaneous distribution", but their semi-group have no longer the branching property.

4. S-equation and its relation to M-equation. Given a system $\{T_t^0, K(t), \mu_n\}$ satisfying [P. 1], [P. 2], and [P. 3], we put, for $f \in \overline{B}^*(S)$

(4.1)
$$F[f](x) = \sum_{n=0}^{\infty} \mu_n [\hat{f}](x), \qquad x \in S.$$

Definition 4.1 Consider an equation on S, for $f \in \overline{B}^*(S)$,

(4.2)
$$u_t(x) = T_t^0 f(x) + \int_0^t \int_S K(x, dr, dy) F[u_{t-r}](y), \qquad x \in S,$$

and we call it S-equation corresponding to $\{T_t^0, K(t), \mu_n\}$ and if u_t satisfies S-equation for $f \in \overline{C}^*(S)$ then

$$\lim_{t \downarrow 0} u_t(x) = f(x),$$

and it is called a solution of S-equation with the initial value f.

1020

¹⁰⁾ For the definition of fundamental systems we refer to [2].

No. 9]

At first, we have

Proposition 4.1. If T_t is a branching semi-group, and if $u(t, \mathbf{x}) = T_t \hat{f}(\mathbf{x})$ satisfies M-equation for $f \in \overline{C}^*(S)$, then (4.3) $u_t(x) = (T_t \hat{f})|_S(x)$

is a solution of S-equation.

Proof is easily performed.

Next we note that a converse of this proposition is valid. Lemma 4.1. If $u_t(x)$ satisfies S-equation

$$u_t(x) = T_t^0 f(x) + \int_0^t \int_S K(x, dr, dy) F[u_{t-r}](y), \qquad x \in S,$$

where $f \in \overline{B}^*(S)$, then it holds that

(4.4)
$$\widehat{T_s^0 u_{t-s}}(\boldsymbol{x}) = \widehat{T_t^0 f}(\boldsymbol{x}) + \int_s^t \langle T_r^0 u_{t-r} \Big| \int_s^t K(\cdot, dr, dy) F[u_{t-r}](y) \rangle(\boldsymbol{x}),$$
$$\boldsymbol{x} \in \boldsymbol{S}.$$

By virtue of this lemma, we have

Theorem 4.1. If $u_t(x)$ is a solution of S-equation with the initial value $f \in C^*(S)$, then $\hat{u}_t(x)$ is a solution of M-equation with the initial value \hat{f} .

Corollary. If for any T>0,

$$\inf_{t\leq T}\inf_{x\in S}|T^{\circ}|(t, x, S)>0,$$

then the solution u(t, x) of S-equation for $f \in C^*(S)$ with $\sup_{t \leq T} ||u(t, .)|| < 1$ is unique.

References

- [1] Ikeda, N., M. Nagasawa, and S. Watanabe: On Branching Markov processes. Proc. Japan Acad., 41, 816-821 (1965).
- [2] —: Fundamental equations of branching Markov processes. Proc. Japan Acad., 42, 252-257 (1966).
- [3] —: A construction of Markov processes by piecing out. Proc. Japan Acad., 42, 370-375 (1966).
- [4] —: A construction of branching Markov processes. Proc. Japan Acad., 42, 380-384 (1966).
- [5] Kolmogoroff, A., I. Petrovsky, and N. Piscounoff: Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bulletin de l'Université d'état à Moscou, 1, Fasc., 6, 1-25 (1937).
- [6] Moyal, J. E.: Discontinuous Markov processes. Acta Math., 98, 221-267 (1957).