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Ehime University

(Comm. by Kinjir6 KuNu(I, .J.A., Nov. 12, 1966)

The large inductive dimension of a space X, Ind X, is defined
inductively as follows. If X is the empty set, Ind X-- 1. For
n-0, 1, 2,..., Ind X<_._n means that for any pair of a closed set F
and an open set G with FcG there exists an open set U such that
Fc UcG, Ind (U-U)<_-_n-1. Ind X-n means that Ind X<-__n and
the statement Ind X_n-1 is false. Ind X--c means that the
statement Ind X<__n is false for any n.

In 11, K. Nagami proved that the inequality
( 1 Ind (X Y) -<__ Ind X/ Ind Y
holds for the case where X is a perfectly normal paracompact space
and Y is a metric space. Then N. Kimura 5 generalized the above
result of Nagami by proving that the inequality (1) holds for the
case where Y is a metric space and X Y is a countably paracom-
pact, totally normal space. Here the notion of totally normal spaces
was defined by C. H. Dowker _3 and he proved that the subset
theorem and the sum theorem hold for the large inductive dimension
of totally normal spaces.

On the other hand, as for the covering dimension of product
spaces, K. Morita 9 proved that the inequality

dim (X Y) _-_< dim X+dim Y
holds for the following three eases" (a) X Y is an S-space, where
a space R is said to be an S-space if every open covering of R has
a star-finite open refinement, (b) X is a paracompaet space and Y is
a locally eompaet paraeompaet space and (e) X is a eountably para-
compact normal space and Y is a locally compact metric space.

In this note we shall prove that the above inequality (1) holds
for the following two eases:

I. X Y is a totally normal S-space.
II. X is a paraeompaet spaee, Y is a locally compact paraeom-

pact space and X Y is a totally normal space.
Our proof for Case I is based on the fact that if R is a totally

normal S-spaee we have Ind R-ind R. Here the small inductive
dimenion of a space X, ind X, is defined induetively as follows.
If X is the empty set, ind X=-I. For n-0,1,2,..., ind

1) Throughout this note a space means a Hausdorff space.
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means that for any pair of a point x and an open set G with x e G
there exists an open set U such that x e UG, ind (U- U)-_<n- 1.
ind X=n means that ind X__<_ n and the statement ind X__<n-1 is false.
ind X= c means that the statement ind X<__n is false for any n.

We can prove the following lemma by the argument as in the
proof of [11, Lemma 2.

Lemma. In a totally normal paracompact space X the follow-
ing conditions are equivalent.

i) Ind Xn.
ii) Every open covering can be refined by a locally finite open

covering such that for any V e Ind (V-V)n-1.
iii) Every open covering can be refined by a a-locally finite)

open covering such that for any Ve Ind (V-V)<__n-1.
Theorem 1. If X is a totally normal S-space, then

Ind X= ind X.
Proof. Since the inequality Ind X>__ind X is obvious, we shall

prove only the inequality
2 IndXind X.
When ind X is infinite, (2) is evidently true. Hence we prove that
(2) holds for the case indX. We shall carry out the proof by
induction on n- ind X. When n- 1, X is empty and hence Ind
X-indX. Let us assume that (2) is true if indX-<_n-1. We
want to show that (2) is true in the case ind X=n.

Let (R) be an arbitrary open covering of X. Let us construct a
refinement of (R) satisfying the condition iii) of Lemma. For each
point x of X there exists an open neighbourhood U(x)such that
U(x) is contained in some open set of (R) and ind (U(x)-U(x))<___n-1.
Since X is an S-space, the open covering {U(x); x e X} has a star-
finite open refinement . Because of the star-finiteness we may
assume that the open covering consists of V, e 2, i-1, 2,.-.,
such that

V V.-, for a.
If we put

then V is at the same time closed and open. By the construction,
each V, is contained in the neighbourhood U(x.) of some point x,
of X. If we put

V. n
then it is obvious that

2) A collection of subsets of a space is said to be a-locally finite if it is the
union of a countable number of locally finite subcollections.
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Therefore we have
ind W- W)-_<_n- 1.

Since each W-W is a closed set of X, it is also a totally normal
S-space. By the assumption of the induction, we have

Ind W- W)-<_n- 1.
It is easily proved that the collection {W; a e 9, i-1, 2,...} is a
a-locally finite open refinement of (R). Thus, by Lemma we have
Ind X<=n, and the proof is completed.

Theorem 2. Let X Y be a totally normal S-space. If at
least one of X and Y is not empty, then we have

Ind (X Y)_-<_Ind X+ Ind Y.
Proof. By Theorem 1 we have

Ind (X Y) ind (X Y).
As is well known, for arbitrary spaces X and Y we have

ind (X Y) -<_ ind X/ ind Y.
And the inequalities

ind X__< Ind X, ind Y_-_< Ind Y
are evidently true. Thus we obtain the theorem.

Theorem :. Let X be a paracompact space, Y a locally com-
pact paracompact space and X Y a totally normal space. If at
least one of X and Y is not empty, then we have

Ind (X Y)=<Ind X/Ind Y.
Proof. It is known that X Y is paracompact ([9, Theorem 4).
First we consider the case where Y is compact. When Ind X

or Ind Y is infinite, the theorem is evidently true. Hence we prove
the theorem ior the case Ind X< c, Ind Y< c. We shall carry out
the proof by induction on k- Ind X/Ind Y. When k- 1, either
X or Y is empty and hence the theorem is true. Let us assume
that the theorem is true if Ind X/Ind Y<k. Let Ind X=m, Ind
Y=n, and m+n-k.

Let (R) be an arbitrary open covering of X Y. Let us construct
a refinement of (R) satisfying the condition ii) of Lemma. Let x be
any fixed point of X. Each point (x, y) of x Y is contained in a
set U V such that U is an open set of X, V is an open set of Y, U V
is contained in some open set of (R), and Ind(V-V)<___n-1. The
collection of all such V’s is an open covering of the compact space
Y, and hence Y is covered by a finite number of them, V,, V,,...
V,(). Let U(x) be the intersection of the correspoding U’s, then
U(x) is an open set of X. By Lemma the open covering {U(x);
x e X} of X has a locally finite open refinement { U; a e t} such that
for any Ind (U-U)<__.m-1. Correspoding to each U we choose
x such that U U(x) and we put
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V.- V,, i- 1, 2,..., q.,
where q, q(x). Then the collection {U. V.; a e 9, i= 1, 2,..., q.}
is a locally finite open refinement of (R). Since U. and V. are closed
sets of X and Y respectively, we have

Ind U. m, Ind V. <--_ n.
On the other hand, by the construction we have

Ind (U.- U.)m-1, Ind (V.- V.)<=n-1.
Therefore, by the assumption of the induction, we obtain

Ind (( U. U) V.), Ind U. V. V.)) <=m/n- 1 k- 1.
Since U. V.- U. V.- (( U.- U.) V.) ( U. V.- V.)), apply-
ing the sum theorem for the large inductive dimension ([3, Theorem
3) we have

Ind U V- U V) __< k 1.
Henee the requiered inequality Ind (X Y)__<k is obtained by Lemma.
Consequently the theorem is established by induction for the ease
where Y is compact.

Next, let Y be a locally compact paracompact space. Then each
point y of Y has a neighbourhood V(y) whose closure V(y)is com-
pact. As is shown above, we have

Ind (X V(y))=<Ind X+Ind V(y)__<Ind X+Ind Y
for any y e Y. Therefor by 4, Proposition 3.4 we have Ind
(X Y)Ind X+Ind Y. Thus the proof is completed.

Remark. The product space of two totally normal spaces is not
totally normal (even normal) in general. Indeed, as the example
given by R. H. Sorgenfrey [12 or E. Michael [6 shows, the product
space X Y is not necessarily normal, even if both X and Y are
perfectly normal S-spaces with the Lindelijf property, or even if X
is a hereditarily paracompact space with the Lindelif property and
Y is a separable metric space. (Notice that a perfectly normal space
as well as a hereditarily paracompact space is totally normal [3).

It is known that X Y is perfectly normal (and hence totally
normal) in the following cases-

(A) X is a perfectly normal space and Y is a metric space
(Morita [10]).

(B) Both X and Y are M-spaces in the sense of J. G. Ceder
2], or equivalently, stratifiable spaces in the sense of C.J.R.
Borges 1.

(C) Both X and Y are cosmm) spaces in the sense of Michael

3) According to Michael E7, a collection of (not necessarily open) subsets
of a space X is said to be a point-pseudobase for X if any pair of a point x and
an open set U with xU there exists a set P of such that x ePcU, and a
space is said to be cosmic if it is a regular space with a countable point-pseudobase.
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[7.
Kimura [5 proved the inequality (1) mentioned above holds in

Case (A).
Next, we see that Xx Y is an S-space in Case (C). Indeed,

the product space of two cosmic spaces is cosmic, a cosmic space
has the LindelSf property [7], and a regular space with the LindelSf
property is an S-space [8. Similarly, Xx Y is an S-space in the
following case:

(D) Both X and Y are separable M-spaces.
Therefore the inequality (1) holds in Cases (C) and (D) by our
Theorem 2.

Finally, we can prove that Xx Y is also perfectly normal in the
following case:

(E) X is a cosmic space (more generally, a paracompact space
with a a-locally finite point-pseudobase) and Y is a locally
compact perfectly normal paracompact space.

Therefore the inequality (1) holds in Case (E) by our Theorem 3.
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